Segmentation of advanced AMD biomarkers in OCT
About
Summary
A deep learning model for segmentation of 13 features associated with neovascular and atrophic age-related macular degeneration (AMD).
Mechanism
Data for model development were obtained from 307 optical coherence tomography volumes. Eight experienced graders manually delineated all abnormalities in 2712 B-scans. A deep neural network was trained with these data to perform voxel-level segmentation of the 13 most common abnormalities (features). For evaluation, 112 B-scans from 112 patients with a diagnosis of neovascular AMD were annotated by 4 independent observers. The main outcome measures were Dice score, intraclass correlation coefficient, and free-response receiver operating characteristic curve.
Interfaces
This algorithm implements all of the following input-output combinations:
Validation and Performance
On 11 of 13 features, the model obtained a mean Dice score of 0.63 ± 0.15, compared with 0.61 ± 0.17 for the observers. The mean intraclass correlation coefficient for the model was 0.66 ± 0.22, compared with 0.62 ± 0.21 for the observers. Two features were not evaluated quantitatively because of a lack of data. Free-response receiver operating characteristic analysis demonstrated that the model scored similar or higher sensitivity per false positives compared with the observers.
Uses and Directions
This algorithm was developed for research purposes only.





