Your mugshot

Kevin Ji

Kevin123

  •  United Kingdom
  •  Heriot-Watt University
  •  School of Mathematical and Computer Sciences
Statistics
  • Member for 3 months, 1 week
  • 7 challenge submissions
  • 3 algorithms run

Activity Overview

STOIC2021 Logo
STOIC2021 - COVID-19 AI Challenge
Challenge User

COVID-19 Artificial Intelligence Challenge: automated diagnosis, and prognostic evaluation based on computed tomography

MELA Logo
MELA2022
Challenge User

MICCAI 2022 MELA Challenge: A Large-Scale Detection Benchmark of 1,100 CT Scans for Mediastinal Lesion Analysis

P2ILF Logo
Preoperative to Intraoperative Laparoscopy Fusion
Challenge User

Preoperative to Intraoperative Laparoscopy Fusion

DREAMING Logo
Diminished Reality for Emerging Applications in Medicine
Challenge User

The Diminished Reality for Emerging Applications in Medicine through Inpainting (DREAMING) challenge seeks to pioneer the integration of Diminished Reality (DR) into oral and maxillofacial surgery. While Augmented Reality (AR) has been extensively explored in medicine, DR remains largely uncharted territory. DR involves virtually removing real objects from the environment by replacing them with their background. Recent inpainting methods present an opportunity for real-time DR applications without scene knowledge. DREAMING focuses on implementing such methods to fill obscured regions in surgery scenes with realistic backgrounds, emphasizing the complex facial anatomy and patient diversity. The challenge provides a dataset of synthetic yet photorealistic surgery scenes featuring humans, simulating an operating room setting. Participants are tasked with developing algorithms that seamlessly remove disruptions caused by medical instruments and hands, offering surgeons an unimpeded view of the operative site.

PUMA Logo
PUMA: Panoptic segmentation of nUclei and tissue in MelanomA
Challenge User

The PUMA Challenge aims to enhance nuclei and tissue segmentation in melanoma histopathology, addressing the need for better prognostic biomarkers to predict treatment responses. Melanoma, a highly aggressive skin cancer, often requires immune checkpoint inhibition therapy, but only half of patients respond. Prognostic biomarkers like tumor infiltrating lymphocytes (TILs) correlate with better therapy responses and lower recurrence rate, but manual TIL scoring is subjective and inconsistent. Current deep learning methods underperform. The PUMA dataset includes annotated primary and metastatic melanoma regions to improve segmentation techniques. The challenge includes two tracks with tasks focused on tissue and nuclei segmentation, encouraging advanced methods to improve predictive accuracy.