Your mugshot

Kele XU

kele

  •  France
  •  Langevin Institute
  •  Engineering
Statistics
  • Member for 8 years, 10 months
  • 31 challenge submissions

Activity Overview

ICIAR2018-Challenge Logo
ICIAR 2018
Challenge User

Can you develop a method for automatic detection of cancerous regions in breast cancer histology images?

drive Logo
DRIVE
Challenge User

Develop a system to automatically segment vessels in human retina fundus images.

REFUGE Logo
REFUGE
Challenge User

The goal of the Retinal Fundus Glaucoma Challenge (REFUGE) is to evaluate and compare automated algorithms for glaucoma detection and optic disc/cup segmentation on a common dataset of retinal fundus images.

CHAOS Logo
CHAOS
Challenge User

In this challenge, you segment the liver in CT data, and segment liver, spleen, and kidneys in MRI data.

ACDC-LungHP Logo
ACDC-LungHP
Challenge User

Automatic Cancer Detection and Classification in Whole-slide Lung Histopathology

AMD Logo
iChallenge-AMD
Challenge User

Age-related Macular Degeneration Challenge

odir2019 Logo
ODIR-2019
Challenge User

北京大学国际眼底图像智能识别竞赛 Peking University International Competition on Ocular Disease Intelligent Recognition

ECDP2020 Logo
HEROHE
Challenge User

Unlike previous challenges, this proposes to find an image analysis algorithm to identify HER2-positive from HER2-negative breast cancer specimens evaluating only the morphological features present on the HE slide, without the staining patterns of IHC.

EndoCV Logo
EndoCV2020
Challenge User

Endoscopy computer vision challenge (EndoCV2020) introduces two core sub-themes in endoscopy: 1) artefact detection and segmentation (EAD2020) and 2) disease detection and segmentation (EDD2020).

LNDb Logo
LNDb Challenge
Challenge User

Lung cancer screening and Fleischner follow-up determination in chest CT through nodule detection, segmentation and characterization

VerSe2020 Logo
VerSe'20
Challenge User

Vertebrae labelling and segmentation on a multi-centre, multi-scanner, and anatomically-diverse CT dataset.

RibFrac Logo
RibFrac
Challenge User

Rib Fracture Detection and Classification Challenge: A large-scale benchmark of 660 CT scans with ~5,000 rib fractures (around 80Gb)

TN-SCUI2020 Logo
Thyroid Nodule Segmentation and Classification
Challenge User

The main topic of this TN-SCUI2020 challenge is finding automatic algorithms to accurately classify the thyroid nodules in ultrasound images. It will provide the biggest public dataset of thyroid nodule with over 4500 patient cases from different ages, genders, and were collected using different ultrasound machines. Each ultrasound image is provided with its ground truth class (benign or maglinant) and a detailed delineation of the nodule. This challenge will provide a unique opportunity for participants from different backgrounds (e.g. academia, industry, and government, etc.) to compare their algorithms in an impartial way.

Learn2Reg Logo
Learn2Reg
Challenge User

Challenge on medical image registration addressing: learning from small datasets; estimating large deformations; dealing with multi-modal scans; and learning from noisy annotations

SARAS-ESAD
Challenge User

This challenge is part of Medical Imaging with Deep Learning conference, 2020. The conference is held between 6 ‑ 8 July 2020 in Montréal. The SARAS (Smart Autonomous Robotic Assistant Surgeon) EU consortium, www.saras-project.eu, is working towards replacing the assistant surgeon in MIS with two assistive robotic arms. To accomplish that, an artificial intelligence based system is required which not only can understand the complete surgical scene but also detect the actions being performed by the main surgeon. This information can later be used infer the response required from the autonomous assistant surgeon.

SurgVisDom
Challenge User

CADA Logo
CADA
Challenge User

Cerebral aneurysms are local dilations of arterial blood vessels caused by a weakness of the vessel wall. Subarachnoid hemorrhage (SAH) caused by the rupture of a cerebral aneurysm is a life-threatening condition associated with high mortality and morbidity. The mortality rate is above 40%, and even in case of survival cognitive impairment can affect patients for a long time. Major goals in image analysis are the detection and risk assessment of aneurysms. We, therefore, subdivided the challenge into three categories. The first task is finding the aneurysm; the second task is the accurate segmentation to allow for a longitudinal assessment of the development of suspicious aneurysms. The third task is the estimation of the rupture risk of the aneurysm.

DFU2020 Logo
Diabetic Foot Ulcer Challenge 2020
Challenge User

Diabetic Foot Ulcer Challenge 2020

COVID-CT Logo
CT diagnosis of COVID-19
Challenge User

Coronavirus disease 2019 (COVID-19) has infected more than 1.3 million individuals all over the world and caused more than 106,000 deaths. One major hurdle in controlling the spreading of this disease is the inefficiency and shortage of medical tests. To mitigate the inefficiency and shortage of existing tests for COVID-19, we propose this competition to encourage the development of effective Deep Learning techniques to diagnose COVID-19 based on CT images. The problem we want to solve is to classify each CT image into positive COVID-19 (the image has clinical findings of COVID-19) or negative COVID-19 ( the image does not have clinical findings of COVID-19). It’s a binary classification problem based on CT images.

CADA-RRE Logo
CADA - Rupture Risk Estimation
Challenge User

Cerebral aneurysms are local dilations of arterial blood vessels caused by a weakness of the vessel wall. Subarachnoid hemorrhage (SAH) caused by the rupture of a cerebral aneurysm is a life-threatening condition associated with high mortality and morbidity. The mortality rate is above 40%, and even in case of survival cognitive impairment can affect patients for a long time. Major goals in image analysis are the detection and risk assessment of aneurysms. We, therefore, subdivided the challenge into three categories. The first task is finding the aneurysm; the second task is the accurate segmentation to allow for a longitudinal assessment of the development of suspicious aneurysms. The third task is the estimation of the rupture risk of the aneurysm.

CADA-AS Logo
CADA - Aneurysm Segmentation
Challenge User

Cerebral aneurysms are local dilations of arterial blood vessels caused by a weakness of the vessel wall. Subarachnoid hemorrhage (SAH) caused by the rupture of a cerebral aneurysm is a life-threatening condition associated with high mortality and morbidity. The mortality rate is above 40%, and even in case of survival cognitive impairment can affect patients for a long time. Major goals in image analysis are the detection and risk assessment of aneurysms. We, therefore, subdivided the challenge into three categories. The first task is finding the aneurysm; the second task is the accurate segmentation to allow for a longitudinal assessment of the development of suspicious aneurysms. The third task is the estimation of the rupture risk of the aneurysm.

qubiq Logo
QUBIQ
Challenge User

Quantification of Uncertainties in Biomedical Image Segmentation Challenge

lodopab Logo
LoDoPaB-CT
Challenge User

Low-Dose CT reconstruction in the setting of the LoDoPaB-CT dataset.

RIADD Logo
RIADD (ISBI-2021)
Challenge User

Retinal Image Analysis for multi-Disease Detection

MitoEM Logo
MitoEM
Challenge User

Large-scale 3D mitochondria instance segmentation benchmark

A-AFMA Logo
A-AFMA
Challenge User

Prenatal ultrasound (US) measurement of amniotic fluid is an important part of fetal surveillance as it provides a non-invasive way of assessing whether there is oligohydramnios (insufficient amniotic fluid) and polyhydramnios (excess amniotic fluid), which are associated with numerous problems both during pregnancy and after birth. In this Image Analysis Challenge, we aim to attract attention from the image analysis community to work on the problem of automated measurement of the MVP using the predefined ultrasound video clip based on a linear-sweep protocol [1]. We define two tasks. The first task is to automatically detect amniotic fluid and the maternal bladder. The second task is to identify the appropriate points for MVP measurement given the selected frame of the video clip, and calculate the length of the connected line between these points. The data was collected from women in the second trimester of pregnancy, as part of the PURE study at the John Radcliffe Hospital in Oxford, UK.

covid-segmentation Logo
COVID-19 LUNG CT LESION SEGMENTATION CHALLENGE - 2020
Challenge User

This challenge will create the platform to evaluate emerging methods for the segmentation and quantification of lung lesions caused by SARS-CoV-2 infection from CT images.

VALDO Logo
Where is VALDO?
Challenge User

Vascular Lesion Detection Challenge at MICCAI 2021

SegPC-2021 Logo
SegPC-2021
Challenge User

This challenge is positioned towards robust segmentation of cells which is the first stage to build such a tool for plasma cell cancer, namely, Multiple Myeloma (MM), which is a type of blood cancer.

EndoCV2021 Logo
EndoCV2021
Challenge User

Endoscopy Computer Vision Challenge 2021

FUSC Logo
Foot Ulcer Segmentation Challenge
Challenge User

Carotid Artery Vessel Wall Segmentation Challenge
Challenge User

To segment the vessel wall of the carotid artery on black-blood MRI images

crossMoDA Logo
Cross-Modality Domain Adaptation Image Segmentation - 2021
Challenge User

The CrossMoDA challenge 2021 introduces the first large and multi-class medical dataset for unsupervised cross-modality Domain Adaptation.

BrainPTM-2021 Logo
BrainPTM 2021
Challenge User

Brain Pre-surgical Tractography Mapping (BrainPTM) in real clinical scans.

RealNoiseMRI Logo
RealNoiseMRI
Challenge User

Brain MRI reconstruction challenge with realistic noise

PAIP2021 Logo
PAIP2021
Challenge User

PAIP 2021 Challenge; Perineural invasion in multiple organ cancer (colon, prostate and pancreatobiliary tract)

FLARE Logo
FLARE21
Challenge User

Fast and Low GPU memory Abdominal oRgan sEgmentation Challenge

BCSegmentation Logo
Breast Cancer Segmentation
Challenge User

Semantic segmentation of histologic regions in scanned FFPE H&E stained slides of triple-negative breast cancer from The Cancer Genome Atlas. See: Amgad M, Elfandy H, ..., Gutman DA, Cooper LAD. Structured crowdsourcing enables convolutional segmentation of histology images. Bioinformatics. 2019. doi: 10.1093/bioinformatics/btz083

feta Logo
FeTA - Fetal Tissue Annotation Challenge
Challenge User

Fetal Tissue Annotation Challenge

fastPET-LD Logo
fastPET-LD
Challenge User

The purpose of this challenge is the detection of “hot spots” in fast PET scan, that is locations that have an elevated standard uptake value (SUV) and potential clinical significance. Corresponding CT scans are also provided. The ground truth, common to both datasets, was generated by a nuclear medicine expert. It consists of a 3-D segmentation map of the hot spots as well as a text file containing the position and size of 3D cuboid bounding box for each hot spot.

NODE21 Logo
NODE21
Challenge User

NODE21: generate and detect nodules on chest radiographs

WSSS4LUAD Logo
WSSS4LUAD
Challenge User

The WSSS4LUAD dataset contains over 10,000 patches of lung adenocarcinoma from whole slide images from Guangdong Provincial People's Hospital and TCGA with image-level annotations. The goal of this challenge is to perform semantic segmentation for differentiating three important types of tissues in the WSIs of lung adenocarcinoma, including cancerous epithelial region, cancerous stroma region and normal region. Paticipants have to use image-level annotations to give pixel-level prediction.

QUBIQ21 Logo
QUBIQ2021
Challenge User

Quantification of Uncertainties in Biomedical Image Segmentation Challenge 2021

MIDOG2021 Logo
MIDOG Challenge 2021
Challenge User

Mitosis Domain Generalization Challenge 2021 (part of MICCAI 2021)

STOIC2021 Logo
STOIC2021 - COVID-19 AI Challenge
Challenge User

COVID-19 Artificial Intelligence Challenge: automated diagnosis, and prognostic evaluation based on computed tomography

CXR-COVID19 Logo
Chest XR COVID-19 detection
Challenge User

Build AI models to detect COVID-19 using Chest X-ray images

PI-CAI Logo
The PI-CAI Challenge
Challenge User

Artificial Intelligence and Radiologists at Prostate Cancer Detection in MRI

AIROGS Logo
AIROGS
Challenge User

Artificial Intelligence for RObust Glaucoma Screening Challenge

CoNIC-Challenge Logo
CoNIC 2022
Challenge User

Colon Nuclei Identification and Counting Challenge 2022

MELA Logo
MELA2022
Challenge User

MICCAI 2022 MELA Challenge: A Large-Scale Detection Benchmark of 1,100 CT Scans for Mediastinal Lesion Analysis

BCNB Logo
BCNB
Challenge User

Early Breast Cancer Core-Needle Biopsy WSI Dataset

ATLAS Logo
ATLAS R2.0 - Stroke Lesion Segmentation
Challenge User

Anatomical Tracings of Lesions After Stroke

SynthRAD2023 Logo
SynthRAD2023
Challenge User

SynthRAD is the first challenge on automatic generation of synthetic computed tomography (sCT) for radiotherapy

autoPET Logo
autoPET
Challenge User

Automatic lesion segmentation in whole-body FDG-PET/CT

ACROBAT Logo
ACROBAT 2023
Challenge User

The ACROBAT challenge aims to advance the development of WSI registration algorithms that can align WSIs of IHC-stained breast cancer tissue sections to corresponding tissue regions that were stained with H&E. All WSIs originate from routine diagnostic workflows.

SLCN Logo
Surface Learning for Clinical Neuroimaging
Challenge User

Prediction of developmental phenotypes (age at birth and cognitive test scores) from cortical surface imaging data

P2ILF Logo
Preoperative to Intraoperative Laparoscopy Fusion
Challenge User

Preoperative to Intraoperative Laparoscopy Fusion

DRAC22 Logo
Diabetic Retinopathy Analysis Challenge MICCAI2022
Challenge User

Diabetic Retinopathy (DR) lesions segmentation, image quality assessment and classification of proliferatived DR (PDR) and non-PDR in ultra-wide optical coherence tomography angiography mosaic (UW-OCTA-M) images

AMOS22 Logo
Multi-Modality Abdominal Multi-Organ Segmentation Challenge 2022
Challenge User

curious2022 Logo
Brain shift with Intraoperative Ultrasound - Segmentation tasks
Challenge User

ATM22 Logo
Multi-site, Multi-Domain Airway Tree Modeling (ATM’22)
Challenge User

Airway segmentation is a crucial step for the analysis of pulmonary diseases including asthma, bronchiectasis, and emphysema. The accurate segmentation based on X-Ray computed tomography (CT) enables the quantitative measurements of airway dimensions and wall thickness, which can reveal the abnormality of patients with chronic obstructive pulmonary disease (COPD). Besides, the extraction of patient-specific airway models from CT images is required for navigatiisted surgery.

shifts Logo
Shifts Challenge 2022
Challenge User

The goal of the Shifts Challenge 2022 is to raise awareness among the research community about the problems of distributional shift, robustness, and uncertainty estimation, and to identify new solutions to address them. The competition will consist of two new tracks: White Matter Multiple Sclerosis (MS) lesion segmentation in 3D Magnetic Resonance Imaging (MRI) of the brain and Marine cargo vessel power estimation.

MEGC2022 Logo
ACMMM MEGC2022: Facial Micro-Expression Grand Challenge
Challenge User

Spotting Facial Macro- and Micro-Expressions in Long Videos

NeurIPS22-CellSeg Logo
Cell Segmentation in Multi-modality Microscopy Images
Challenge User

Weakly Supervised Cell Segmentation in Multi-modality High-resolution Microscopy Images

2023PAIP Logo
PAIP 2023: TC prediction in pancreatic and colon cancer
Challenge User

Tumor cellularity prediction in pancreatic cancer (supervised learning) and colon cancer (transfer learning)

SNEMI3D Logo
SNEMI3D: 3D Segmentation of neurites in EM images
Challenge User

The challenge is organized in the context of the IEEE International Symposium on Biomedical Imaging, 2013. The old evaluation site (http://brainiac2.snemi3d.org/SNEMI3D/) will be replaced by this one.

RnR-ExM Logo
Robust Non-rigid Registration Challenge for Expansion Microscopy
Challenge User

XPRESS Logo
Xray Projectomic Reconstruction Extracting Segment with Skeleton
Challenge User

autoPET-II Logo
autoPET-II
Challenge User

Automated Lesion Segmentation in PET/CT - Domain Generalization

UltrasoundEnhance2023 Logo
Ultrasound Image Enhancement challenge 2023
Challenge User

MedFM2023 Logo
Foundation Model Prompting for Medical Image Classification
Challenge User

The primary objective of this challenge is to promote the development and evaluation of model adaptation techniques for medical image classification to leverage the existing foundation models.

LDCTIQAC2023 Logo
Low-dose Computed Tomography Perceptual Image Quality Assessment
Challenge User

PANORAMA Logo
PANORAMA
Challenge User

Artificial Intelligence and Radiologists at Pancreatic Cancer Diagnosis in CT

JustRAIGS Logo
Justified Referral in AI Glaucoma Screening
Challenge User

LEOPARD Logo
The LEOPARD Challenge
Challenge User

AI4Life-MDC24 Logo
AI4Life Microscopy Denoising Challenge
Challenge User

Wellcome to AI4Life-MDC24! In this challenge, we want to focus on an unsupervised denoising of microscopy images. By participating, researchers can contribute to a critical area of scientific research, aiding in interpreting microscopy images and potentially unlocking discoveries in biology and medicine.

SynthRAD2025 Logo
SynthRAD2025
Challenge User

SynthRAD is the first challenge on automatic generation of synthetic computed tomography (sCT) for radiotherapy

SELMA3D Logo
Self-supervised learning for 3D light-sheet microscopy image seg
Challenge User

AIROGS Baseline Logo
AIROGS Baseline
Algorithm User

A baseline algorithm for the AIROGS challenge