Your mugshot

Dong Yang

yangd05

  •  United States of America
  •  Rutgers University
  •  Computer Science
Statistics
  • Member for 5 years, 8 months
  • 126 challenge submissions
  • 1 algorithms run

Activity Overview

PROMISE12 Logo
PROMISE12
Challenge User

The goal of this challenge is to compare interactive and (semi)-automatic segmentation algorithms for MRI of the prostate.

LUNA16 Logo
LUNA16
Challenge User

The LUNA16 challenge: automatic nodule detection on chest CT

CHAOS Logo
CHAOS
Challenge User

In this challenge, you segment the liver in CT data, and segment liver, spleen, and kidneys in MRI data.

Decathlon-10 Logo
Decathlon
Challenge User

The Medical Segmentation Decathlon challenge tests the generalisability of machine learning algorithms when applied to 10 different semantic segmentation task.

KiTS19 Logo
KiTS19
Challenge User

2019 Kidney and Kidney Tumor Segmentation Challenge

PAIP2019 Logo
PAIP 2019
Challenge User

PAIP2019: Liver Cancer Segmentation Task 1: Liver Cancer Segmentation Task 2: Viable Tumor Burden Estimation

VerSe2019 Logo
VerSe`19
Challenge User

Vertebrae labelling and segmentation on a spine dataset on an unprecedented 150 CT scans with voxel-level vertebral annotations.

VerSe2020 Logo
VerSe'20
Challenge User

Vertebrae labelling and segmentation on a multi-centre, multi-scanner, and anatomically-diverse CT dataset.

COVID-CT Logo
CT diagnosis of COVID-19
Challenge User

Coronavirus disease 2019 (COVID-19) has infected more than 1.3 million individuals all over the world and caused more than 106,000 deaths. One major hurdle in controlling the spreading of this disease is the inefficiency and shortage of medical tests. To mitigate the inefficiency and shortage of existing tests for COVID-19, we propose this competition to encourage the development of effective Deep Learning techniques to diagnose COVID-19 based on CT images. The problem we want to solve is to classify each CT image into positive COVID-19 (the image has clinical findings of COVID-19) or negative COVID-19 ( the image does not have clinical findings of COVID-19). It’s a binary classification problem based on CT images.

covid-segmentation Logo
COVID-19 LUNG CT LESION SEGMENTATION CHALLENGE - 2020
Challenge User

This challenge will create the platform to evaluate emerging methods for the segmentation and quantification of lung lesions caused by SARS-CoV-2 infection from CT images.

kits21 Logo
KiTS21
Challenge User

The 2021 MICCAI Kidney and Kidney Tumor Segmentation challenge

BrainPTM-2021 Logo
BrainPTM 2021
Challenge User

Brain Pre-surgical Tractography Mapping (BrainPTM) in real clinical scans.

FLARE Logo
FLARE21
Challenge User

Fast and Low GPU memory Abdominal oRgan sEgmentation Challenge

feta Logo
FeTA - Fetal Tissue Annotation Challenge
Challenge User

Fetal Tissue Annotation Challenge

PI-CAI Logo
The PI-CAI Challenge
Challenge User

Artificial Intelligence and Radiologists at Prostate Cancer Detection in MRI

Parse2022 Logo
Parse2022
Challenge User

It is of significant clinical interest to study pulmonary artery structures in the field of medical image analysis. One prerequisite step is to segment pulmonary artery structures from CT with high accuracy and low time-consuming. The segmentation of pulmonary artery structures benefits the quantification of its morphological changes for diagnosis of pulmonary hypertension and thoracic surgery. However, due to the complexity of pulmonary artery topology, automated segmentation of pulmonary artery topology is a challenging task. Besides, the open accessible large-scale CT data with well labeled pulmonary artery are scarce (The large variations of the topological structures from different patients make the annotation an extremely challenging process). The lack of well labeled pulmonary artery hinders the development of automatic pulmonary artery segmentation algorithm. Hence, we try to host the first Pulmonary ARtery SEgmentation challenge in MICCAI 2022 (Named Parse2022) to start a new research topic.

instance Logo
INSTANCE2022
Challenge User

The 2022 Intracranial Hemorrhage Segmentation Challenge on Non-Contrast head CT (NCCT)

ATLAS Logo
ATLAS R2.0 - Stroke Lesion Segmentation
Challenge User

Anatomical Tracings of Lesions After Stroke

autoPET Logo
autoPET
Challenge User

Automatic lesion segmentation in whole-body FDG-PET/CT

P2ILF Logo
Preoperative to Intraoperative Laparoscopy Fusion
Challenge User

Preoperative to Intraoperative Laparoscopy Fusion

DRAC22 Logo
Diabetic Retinopathy Analysis Challenge MICCAI2022
Challenge User

Diabetic Retinopathy (DR) lesions segmentation, image quality assessment and classification of proliferatived DR (PDR) and non-PDR in ultra-wide optical coherence tomography angiography mosaic (UW-OCTA-M) images

AMOS22 Logo
Multi-Modality Abdominal Multi-Organ Segmentation Challenge 2022
Challenge User

curious2022 Logo
Brain shift with Intraoperative Ultrasound - Segmentation tasks
Challenge User

ATM22 Logo
Multi-site, Multi-Domain Airway Tree Modeling (ATM’22)
Challenge User

Airway segmentation is a crucial step for the analysis of pulmonary diseases including asthma, bronchiectasis, and emphysema. The accurate segmentation based on X-Ray computed tomography (CT) enables the quantitative measurements of airway dimensions and wall thickness, which can reveal the abnormality of patients with chronic obstructive pulmonary disease (COPD). Besides, the extraction of patient-specific airway models from CT images is required for navigatiisted surgery.

shifts Logo
Shifts Challenge 2022
Challenge User

The goal of the Shifts Challenge 2022 is to raise awareness among the research community about the problems of distributional shift, robustness, and uncertainty estimation, and to identify new solutions to address them. The competition will consist of two new tracks: White Matter Multiple Sclerosis (MS) lesion segmentation in 3D Magnetic Resonance Imaging (MRI) of the brain and Marine cargo vessel power estimation.

MEGC2022 Logo
ACMMM MEGC2022: Facial Micro-Expression Grand Challenge
Challenge User

Spotting Facial Macro- and Micro-Expressions in Long Videos

isles22 Logo
Ischemic Stroke Lesion Segmentation Challenge
Challenge User

2023PAIP Logo
PAIP 2023: TC prediction in pancreatic and colon cancer
Challenge User

Tumor cellularity prediction in pancreatic cancer (supervised learning) and colon cancer (transfer learning)

HaN-Seg2023 Logo
The Head and Neck Organ-at-Risk CT & MR Segmentation Challenge
Challenge User

A semantic multimodal segmentation challenge comprising 30 organs at risk

XPRESS Logo
Xray Projectomic Reconstruction Extracting Segment with Skeleton
Challenge User

autoPET-II Logo
autoPET-II
Challenge User

Automated Lesion Segmentation in PET/CT - Domain Generalization

toothfairy Logo
ToothFairy: Cone-Beam Computed Tomography Segmentation Challenge
Challenge User

This is the first edition of the ToothFairy challenge organized by the University of Modena and Reggio Emilia with the collaboration of Raudboud University. This challenge aims at pushing the development of deep learning frameworks to segment the Inferior Alveolar Canal (IAC) by incrementally extending the amount of publicly available 3D-annotated Cone Beam Computed Tomography (CBCT) scans. CBCT modality is becoming increasingly important for treatment planning and diagnosis in implant dentistry and maxillofacial surgery. The three-dimensional information acquired with CBCT can be crucial to plan a vast number of surgical interventions with the aim of preserving noble anatomical structures such as the Inferior Alveolar Canal (IAC), which contains the homonymous nerve (Inferior Alveolar Nerve, IAN). Deep learning models can support medical personnel in surgical planning procedures by providing a voxel-level segmentation of the IAN automatically extracted from CBCT scans.

LNQ2023 Logo
LNQ2023
Challenge User

Accurate lymph node size estimation is critical for staging cancer patients, initial therapeutic management, and in longitudinal scans, assessing response to therapy. Current standard practice for quantifying lymph node size is based on a variety of criteria that use unidirectional or bidirectional measurements on just one or a few nodes, typically on just one axial slice. But humans have hundreds of lymph nodes, any number of which may be enlarged to various degrees due to disease or immune response. While a normal lymph node may be approximately 5mm in diameter, a diseased lymph node may be several cm in diameter. The mediastinum, the anatomical area between the lungs and around the heart, may contain ten or more lymph nodes, often with three or more enlarged greater than 1cm. Accurate segmentation in 3D would provide more information to evaluate lymph node disease.

MultiCenterAorta Logo
SEG.A. - Segmentation of the Aorta
Challenge User

Segmentation, modeling and visualization of the arterial tree are still a challenge in medical image analysis. The main track of this challenge deals with the fully automatic segmentation of the aortic vessel tree in computed tomography images. Optionally, teams can submit tailored solutions for meshing and visualization of the vessel tree.

SegRap2023 Logo
SegRap 2023
Challenge User

A segmentation challenge with 200 patients (two modalities of CT images, 45 OARs and 2 GTVs).

ULS23 Logo
Universal Lesion Segmentation Challenge '23
Challenge User

nva_atlas Logo
nva_atlas
Algorithm Editor