Your mugshot

wang jiacheng

jcwang

  •  China
  •  Xiamen University
  •  Department of Computer Science at School of Informatics
Statistics
  • Member for 5 years, 6 months
  • 20 challenge submissions

Activity Overview

LOLA11 Logo
LOLA11
Challenge User

The goal of LOLA11 (LObe and Lung Analysis 2011) is to compare methods for (semi-)automatic segmentation of the lungs and lobes from chest computed tomography scans. Any team, whether from academia or industry, can join.

CHAOS Logo
CHAOS
Challenge User

In this challenge, you segment the liver in CT data, and segment liver, spleen, and kidneys in MRI data.

EAD2019 Logo
EAD2019
Challenge User

Endoscopic Artefact Detection (EAD) is a core problem and needed for realising robust computer-assisted tools. The EAD challenge has 3 tasks: 1) Multi-class artefact detection, 2) Region segmentation, 3) Detection generalisation.

KiTS19 Logo
KiTS19
Challenge User

2019 Kidney and Kidney Tumor Segmentation Challenge

VerSe2019 Logo
VerSe`19
Challenge User

Vertebrae labelling and segmentation on a spine dataset on an unprecedented 150 CT scans with voxel-level vertebral annotations.

StructSeg2019 Logo
StructSeg2019
Challenge User

Welcome to Automatic Structure Segmentation for Radiotherapy Planning Challenge 2019. This competition is part of the MICCAI 2019 Challenge.

DigestPath2019 Logo
DigestPath2019
Challenge User

Welcome to Digestive-System Pathological Detection and Segmentation Challenge 2019. This competition is part of the MICCAI 2019 Challenge.

odir2019 Logo
ODIR-2019
Challenge User

北京大学国际眼底图像智能识别竞赛 Peking University International Competition on Ocular Disease Intelligent Recognition

SurgVisDom
Challenge User

COVID-CT Logo
CT diagnosis of COVID-19
Challenge User

Coronavirus disease 2019 (COVID-19) has infected more than 1.3 million individuals all over the world and caused more than 106,000 deaths. One major hurdle in controlling the spreading of this disease is the inefficiency and shortage of medical tests. To mitigate the inefficiency and shortage of existing tests for COVID-19, we propose this competition to encourage the development of effective Deep Learning techniques to diagnose COVID-19 based on CT images. The problem we want to solve is to classify each CT image into positive COVID-19 (the image has clinical findings of COVID-19) or negative COVID-19 ( the image does not have clinical findings of COVID-19). It’s a binary classification problem based on CT images.

covid-segmentation Logo
COVID-19 LUNG CT LESION SEGMENTATION CHALLENGE - 2020
Challenge User

This challenge will create the platform to evaluate emerging methods for the segmentation and quantification of lung lesions caused by SARS-CoV-2 infection from CT images.

EndoCV2021 Logo
EndoCV2021
Challenge User

Endoscopy Computer Vision Challenge 2021

crossMoDA Logo
Cross-Modality Domain Adaptation Image Segmentation - 2021
Challenge User

The CrossMoDA challenge 2021 introduces the first large and multi-class medical dataset for unsupervised cross-modality Domain Adaptation.

CholecTriplet2021 Logo
CholecTriplet 2021
Challenge User

EndoVis Sub-challenge for Surgical Action Triplet Recognition

EndoCV2022 Logo
EndoCV2022
Challenge User

Developing methods for "detection task'' and ''segmentation task'' for endoscopic video sequence data

MELA Logo
MELA2022
Challenge User

MICCAI 2022 MELA Challenge: A Large-Scale Detection Benchmark of 1,100 CT Scans for Mediastinal Lesion Analysis

FLARE22 Logo
MICCAI FLARE 2022
Challenge User

MICCAI 2022 Fast and Low-resource semi-supervised Abdominal oRgan sEgmentation (FLARE) Challenge

P2ILF Logo
Preoperative to Intraoperative Laparoscopy Fusion
Challenge User

Preoperative to Intraoperative Laparoscopy Fusion

AMOS22 Logo
Multi-Modality Abdominal Multi-Organ Segmentation Challenge 2022
Challenge User

SurgToolLoc Logo
Surgical Tool Localization in endoscopic videos
Challenge User

NeurIPS22-CellSeg Logo
Cell Segmentation in Multi-modality Microscopy Images
Challenge User

Weakly Supervised Cell Segmentation in Multi-modality High-resolution Microscopy Images

2023PAIP Logo
PAIP 2023: TC prediction in pancreatic and colon cancer
Challenge User

Tumor cellularity prediction in pancreatic cancer (supervised learning) and colon cancer (transfer learning)

HaN-Seg2023 Logo
The Head and Neck Organ-at-Risk CT & MR Segmentation Challenge
Challenge User

A semantic multimodal segmentation challenge comprising 30 organs at risk

RnR-ExM Logo
Robust Non-rigid Registration Challenge for Expansion Microscopy
Challenge User

SegRap2023 Logo
SegRap 2023
Challenge User

A segmentation challenge with 200 patients (two modalities of CT images, 45 OARs and 2 GTVs).