Muhammad Bilal
bilalUWE
- United Kingdom
- Birmingham City University
- Big Data & AI Lab, Birmingham City Business School
- Website
Statistics
- Member for 5 years, 9 months
- 82 challenge submissions
- 39 algorithms run
Activity Overview
SEG.A. - Segmentation of the Aorta
Challenge UserSegmentation, modeling and visualization of the arterial tree are still a challenge in medical image analysis. The main track of this challenge deals with the fully automatic segmentation of the aortic vessel tree in computed tomography images. Optionally, teams can submit tailored solutions for meshing and visualization of the vessel tree.
REport Generation in pathology using Pan-Asia Giga-pixel WSIs
Challenge UserThis project focuses on advancing automated pathology report generation using vision-language foundation models. It addresses the limitations of traditional NLP metrics (e.g., BLEU, METEOR, ROUGE) by emphasizing clinically relevant evaluation. The initiative includes standardized datasets, expert comparisons, and medical-domain-specific metrics to assess model performance. It also explores the integration of generated reports into diagnostic workflows with clinical feedback. To support fairness and generalizability, the challenge dataset comprises ~20,500 cases from six medical centers in Korea, Japan, India, Turkey, and Germany, promoting multicultural and multiethnic medical AI development.