Your mugshot

Christian Marzahl

christian.marzahl

  •  Germany
  •  Gestalt Diagnostics
  •  Research AI
  •  Website
Statistics
  • Member for 7 years, 11 months
  • 34 challenge submissions

Activity Overview

LUNA16 Logo
LUNA16
Challenge User

The LUNA16 challenge: automatic nodule detection on chest CT

ICIAR2018-Challenge Logo
ICIAR 2018
Challenge User

Can you develop a method for automatic detection of cancerous regions in breast cancer histology images?

ANHIR Logo
ANHIR
Challenge User

The challenge focuses on comparing the accuracy (using manually annotated landmarks) and the approximate speed of automatic non-linear registration methods for aligning microscopy images of multi-stained histology tissue samples.

BreastPathQ Logo
BreastPathQ: Cancer Cellularity Challenge 2019
Challenge User

SPIE-AAPM-NCI BreastPathQ:Cancer Circularity Challenge 2019: Participants will be tasked to develop an automated method for analyzing histology patches extracted from whole slide images and assign a score reflecting cancer cellularity for tumor burden assessment in each.

SegPC-2021 Logo
SegPC-2021
Challenge User

This challenge is positioned towards robust segmentation of cells which is the first stage to build such a tool for plasma cell cancer, namely, Multiple Myeloma (MM), which is a type of blood cancer.

NuCLS Logo
NuCLS
Challenge User

Classification, Localization and Segmentation of nuclei in scanned FFPE H&E stained slides of triple-negative breast cancer from The Cancer Genome Atlas. See: Amgad et al. 2021. arXiv:2102.09099 [cs.CV].

MIDOG2021 Logo
MIDOG Challenge 2021
Challenge Editor

Mitosis Domain Generalization Challenge 2021 (part of MICCAI 2021)

ACROBAT Logo
ACROBAT 2023
Challenge User

The ACROBAT challenge aims to advance the development of WSI registration algorithms that can align WSIs of IHC-stained breast cancer tissue sections to corresponding tissue regions that were stained with H&E. All WSIs originate from routine diagnostic workflows.

MIDOG2022 Logo
MItosis DOmain Generalization Challenge 2022
Challenge User

2023PAIP Logo
PAIP 2023: TC prediction in pancreatic and colon cancer
Challenge User

Tumor cellularity prediction in pancreatic cancer (supervised learning) and colon cancer (transfer learning)

OCELOT2023 Logo
OCELOT 2023: Cell Detection from Cell-Tissue Interaction
Challenge User

LEOPARD Logo
The LEOPARD Challenge
Challenge User

COSAS Logo
Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation
Challenge User

PUMA Logo
PUMA: Panoptic segmentation of nUclei and tissue in MelanomA
Challenge User

The PUMA Challenge aims to enhance nuclei and tissue segmentation in melanoma histopathology, addressing the need for better prognostic biomarkers to predict treatment responses. Melanoma, a highly aggressive skin cancer, often requires immune checkpoint inhibition therapy, but only half of patients respond. Prognostic biomarkers like tumor infiltrating lymphocytes (TILs) correlate with better therapy responses and lower recurrence rate, but manual TIL scoring is subjective and inconsistent. Current deep learning methods underperform. The PUMA dataset includes annotated primary and metastatic melanoma regions to improve segmentation techniques. The challenge includes two tracks with tasks focused on tissue and nuclei segmentation, encouraging advanced methods to improve predictive accuracy.