Your mugshot

Yubo Tan

Tank

  •  China
  •  University of Electronic Science and Technology of China
  •  School of Life Science and Technology
Statistics
  • Member for 3 years, 3 months

Activity Overview

IDRiD Logo
IDRiD
Challenge Participant

This challenge evaluates automated techniques for analysis of fundus photographs. We target segmentation of retinal lesions like exudates, microaneurysms, and hemorrhages and detection of the optic disc and fovea. Also, we seek grading of fundus images according to the severity level of DR and DME.

PI-CAI Logo
The PI-CAI Challenge
Challenge Participant

Artificial Intelligence and Radiologists at Prostate Cancer Detection in MRI

PS-FH-AOP-2023 Logo
FH-PS-AOP challenge
Challenge Participant

Fetal Head and Pubic Symphysis Segmentation Challenge

HaN-Seg2023 Logo
The Head and Neck Organ-at-Risk CT & MR Segmentation Challenge
Challenge Participant

A semantic multimodal segmentation challenge comprising 30 organs at risk

LNQ2023 Logo
LNQ2023
Challenge Participant

Accurate lymph node size estimation is critical for staging cancer patients, initial therapeutic management, and in longitudinal scans, assessing response to therapy. Current standard practice for quantifying lymph node size is based on a variety of criteria that use unidirectional or bidirectional measurements on just one or a few nodes, typically on just one axial slice. But humans have hundreds of lymph nodes, any number of which may be enlarged to various degrees due to disease or immune response. While a normal lymph node may be approximately 5mm in diameter, a diseased lymph node may be several cm in diameter. The mediastinum, the anatomical area between the lungs and around the heart, may contain ten or more lymph nodes, often with three or more enlarged greater than 1cm. Accurate segmentation in 3D would provide more information to evaluate lymph node disease.

UltrasoundEnhance2023 Logo
Ultrasound Image Enhancement challenge 2023
Challenge Participant

MultiCenterAorta Logo
SEG.A. - Segmentation of the Aorta
Challenge Participant

Segmentation, modeling and visualization of the arterial tree are still a challenge in medical image analysis. The main track of this challenge deals with the fully automatic segmentation of the aortic vessel tree in computed tomography images. Optionally, teams can submit tailored solutions for meshing and visualization of the vessel tree.

SegRap2023 Logo
SegRap 2023
Challenge Participant

A segmentation challenge with 200 patients (two modalities of CT images, 45 OARs and 2 GTVs).

OCELOT2023 Logo
OCELOT 2023: Cell Detection from Cell-Tissue Interaction
Challenge Participant