Your mugshot

chen junqiang

junqiangchen

  •  China
  •  Mediworks
  •  R&D
  •  Website
Statistics
  • Member for 2 years, 11 months
  • 123 challenge submissions

Activity Overview

VESSEL12 Logo
VESSEL12
Challenge User

The VESSEL12 challenge compares methods for automatic (and semi-automatic) segmentation of blood vessels in the lungs from CT images.

CRASS Logo
CRASS
Challenge User

CRASS stands for Chest Radiograph Anatomical Structure Segmentation. The challenge currently invites participants to send in results for clavicle segmentation algorithms.

CAMELYON17 Logo
CAMELYON17
Challenge User

Automated detection and classification of breast cancer metastases in whole-slide images of histological lymph node sections. This task has high clinical relevance and would normally require extensive microscopic assessment by pathologists.

RETOUCH Logo
RETOUCH
Challenge User

Retinal OCT Fluid Challenge (RETOUCH) compares automated algorithms that are able to detect and segment different types of retinal fluid in optical coherence tomography (OCT).

ICIAR2018-Challenge Logo
ICIAR 2018
Challenge User

Can you develop a method for automatic detection of cancerous regions in breast cancer histology images?

SLIVER07 Logo
SLIVER07
Challenge User

The goal of this competition is to compare different algorithms to segment the liver from clinical 3D computed tomography (CT) scans.

ROCC Logo
ROCC
Challenge User

Retinal OCT Classification Challenge (ROCC) is organized as a one day Challenge in conjunction with MVIP2017. The goal of this challenge is to call different automated algorithms that are able to detect DR disease from normal retina on a common dataset of OCT volumes, acquired with Topcon SD-OCT devices.

ANHIR Logo
ANHIR
Challenge User

The challenge focuses on comparing the accuracy (using manually annotated landmarks) and the approximate speed of automatic non-linear registration methods for aligning microscopy images of multi-stained histology tissue samples.

CHAOS Logo
CHAOS
Challenge User

In this challenge, you segment the liver in CT data, and segment liver, spleen, and kidneys in MRI data.

EAD2019 Logo
EAD2019
Challenge User

Endoscopic Artefact Detection (EAD) is a core problem and needed for realising robust computer-assisted tools. The EAD challenge has 3 tasks: 1) Multi-class artefact detection, 2) Region segmentation, 3) Detection generalisation.

EndoVisSub2019-SCARED Logo
Stereo Correspondence and Reconstruction of Endoscopic Data
Challenge User

Stereo Correspondence and Reconstruction of Endoscopic Data

Gleason2019 Logo
Gleason2019
Challenge User

MICCAI 2019 Automatic Prostate Gleason Grading Challenge: This challenge aims at the automatic Gleason grading of prostate cancer from H&E-stained histopathology images. This task is of critical importance because Gleason score is a strong prognostic predictor. On the other hand, it is very challenging because of the large degree of heterogeneity in the cellular and glandular patterns associated with each Gleason grade, leading to significant inter-observer variability, even among expert pathologists.

odir2019 Logo
ODIR-2019
Challenge User

北京大学国际眼底图像智能识别竞赛 Peking University International Competition on Ocular Disease Intelligent Recognition

LNDb Logo
LNDb Challenge
Challenge User

Lung cancer screening and Fleischner follow-up determination in chest CT through nodule detection, segmentation and characterization

RibFrac Logo
RibFrac
Challenge User

Rib Fracture Detection and Classification Challenge: A large-scale benchmark of 660 CT scans with ~5,000 rib fractures (around 80Gb)

Learn2Reg Logo
Learn2Reg
Challenge User

Challenge on medical image registration addressing: learning from small datasets; estimating large deformations; dealing with multi-modal scans; and learning from noisy annotations

Automated Segmentation Of Coronary Arteries
Challenge User

Automated Segmentation Of Coronary Arteries

RIADD Logo
RIADD (ISBI-2021)
Challenge User

Retinal Image Analysis for multi-Disease Detection

covid-segmentation Logo
COVID-19 LUNG CT LESION SEGMENTATION CHALLENGE - 2020
Challenge User

This challenge will create the platform to evaluate emerging methods for the segmentation and quantification of lung lesions caused by SARS-CoV-2 infection from CT images.

SegPC-2021 Logo
SegPC-2021
Challenge User

This challenge is positioned towards robust segmentation of cells which is the first stage to build such a tool for plasma cell cancer, namely, Multiple Myeloma (MM), which is a type of blood cancer.

FUSC Logo
Foot Ulcer Segmentation Challenge
Challenge User

BrainPTM-2021 Logo
BrainPTM 2021
Challenge User

Brain Pre-surgical Tractography Mapping (BrainPTM) in real clinical scans.

FLARE Logo
FLARE21
Challenge User

Fast and Low GPU memory Abdominal oRgan sEgmentation Challenge

feta Logo
FeTA - Fetal Tissue Annotation Challenge
Challenge User

Fetal Tissue Annotation Challenge

WSSS4LUAD Logo
WSSS4LUAD
Challenge User

The WSSS4LUAD dataset contains over 10,000 patches of lung adenocarcinoma from whole slide images from Guangdong Provincial People's Hospital and TCGA with image-level annotations. The goal of this challenge is to perform semantic segmentation for differentiating three important types of tissues in the WSIs of lung adenocarcinoma, including cancerous epithelial region, cancerous stroma region and normal region. Paticipants have to use image-level annotations to give pixel-level prediction.

STOIC2021 Logo
STOIC2021 - COVID-19 AI Challenge
Challenge User

COVID-19 Artificial Intelligence Challenge: automated diagnosis, and prognostic evaluation based on computed tomography

PI-CAI Logo
The PI-CAI Challenge
Challenge User

Artificial Intelligence and Radiologists at Prostate Cancer Detection in MRI

AIROGS Logo
AIROGS
Challenge User

Artificial Intelligence for RObust Glaucoma Screening Challenge

CoNIC-Challenge Logo
CoNIC 2022
Challenge User

Colon Nuclei Identification and Counting Challenge 2022

MELA Logo
MELA2022
Challenge User

MICCAI 2022 MELA Challenge: A Large-Scale Detection Benchmark of 1,100 CT Scans for Mediastinal Lesion Analysis

kipa22 Logo
KiPA22 (Regular Challenge)
Challenge User

The challenge is aimed to segment kidney, renal tumors, arteries, and veins from computed tomography angiography (CTA) images in one inference.

Parse2022 Logo
Parse2022
Challenge User

It is of significant clinical interest to study pulmonary artery structures in the field of medical image analysis. One prerequisite step is to segment pulmonary artery structures from CT with high accuracy and low time-consuming. The segmentation of pulmonary artery structures benefits the quantification of its morphological changes for diagnosis of pulmonary hypertension and thoracic surgery. However, due to the complexity of pulmonary artery topology, automated segmentation of pulmonary artery topology is a challenging task. Besides, the open accessible large-scale CT data with well labeled pulmonary artery are scarce (The large variations of the topological structures from different patients make the annotation an extremely challenging process). The lack of well labeled pulmonary artery hinders the development of automatic pulmonary artery segmentation algorithm. Hence, we try to host the first Pulmonary ARtery SEgmentation challenge in MICCAI 2022 (Named Parse2022) to start a new research topic.

TDSC-ABUS2023 Logo
TDSC-ABUS2023
Challenge User

Tumor Detection, Segmentation and Classification Challenge on Automated 3D Breast Ultrasound

instance Logo
INSTANCE2022
Challenge User

The 2022 Intracranial Hemorrhage Segmentation Challenge on Non-Contrast head CT (NCCT)

RAVIR Logo
RAVIR
Challenge User

A dataset for semantic segmentation and quantitative analysis of retinal arteries and veins in infrared reflectance imaging

ATLAS Logo
ATLAS R2.0 - Stroke Lesion Segmentation
Challenge User

Anatomical Tracings of Lesions After Stroke

SynthRAD2023 Logo
SynthRAD2023
Challenge User

SynthRAD is the first challenge on automatic generation of synthetic computed tomography (sCT) for radiotherapy

3DTeethSeg Logo
3D Teeth Scan Segmentation and Labeling Challenge MICCAI2022
Challenge User

Computer-aided design (CAD) tools have become increasingly popular in modern dentistry for highly accurate treatment planning. In particular, in orthodontic CAD systems, advanced intraoral scanners (IOSs) are now widely used as they provide precise digital surface models of the dentition. Such models can dramatically help dentists simulate teeth extraction, move, deletion, and rearrangement and therefore ease the prediction of treatment outcomes. Although IOSs are becoming widespread in clinical dental practice, there are only few contributions on teeth segmentation/labeling available in the literature and no publicly available database. A fundamental issue that appears with IOS data is the ability to reliably segment and identify teeth in scanned observations. Teeth segmentation and labelling is difficult as a result of the inherent similarities between teeth shapes as well as their ambiguous positions on jaws.

FLARE22 Logo
MICCAI FLARE 2022
Challenge User

MICCAI 2022 Fast and Low-resource semi-supervised Abdominal oRgan sEgmentation (FLARE) Challenge

AGGC22 Logo
AGGC22
Challenge User

autoPET Logo
autoPET
Challenge User

Automatic lesion segmentation in whole-body FDG-PET/CT

SLCN Logo
Surface Learning for Clinical Neuroimaging
Challenge User

Prediction of developmental phenotypes (age at birth and cognitive test scores) from cortical surface imaging data

P2ILF Logo
Preoperative to Intraoperative Laparoscopy Fusion
Challenge User

Preoperative to Intraoperative Laparoscopy Fusion

HECKTOR Logo
MICCAI HECKTOR 2022
Challenge User

Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT Images

K2S Logo
K2S: from undersampled K-space To automatic Segmentation
Challenge User

K2S: from undersampled K-space To automatic Segmentation

DRAC22 Logo
Diabetic Retinopathy Analysis Challenge MICCAI2022
Challenge User

Diabetic Retinopathy (DR) lesions segmentation, image quality assessment and classification of proliferatived DR (PDR) and non-PDR in ultra-wide optical coherence tomography angiography mosaic (UW-OCTA-M) images

AMOS22 Logo
Multi-Modality Abdominal Multi-Organ Segmentation Challenge 2022
Challenge User

curious2022 Logo
Brain shift with Intraoperative Ultrasound - Segmentation tasks
Challenge User

vessel-wall-segmentation-2022 Logo
Carotid Vessel Wall Segmentation and Atherosclerosis Diagnosis
Challenge User

crossmoda2022 Logo
Cross-Modality Domain Adaptation: Segmentation & Classification
Challenge User

The CrossMoDA 2022 challenge is the second edition of the first large and multi-class medical dataset for unsupervised cross-modality Domain Adaptation.

ATM22 Logo
Multi-site, Multi-Domain Airway Tree Modeling (ATM’22)
Challenge User

Airway segmentation is a crucial step for the analysis of pulmonary diseases including asthma, bronchiectasis, and emphysema. The accurate segmentation based on X-Ray computed tomography (CT) enables the quantitative measurements of airway dimensions and wall thickness, which can reveal the abnormality of patients with chronic obstructive pulmonary disease (COPD). Besides, the extraction of patient-specific airway models from CT images is required for navigatiisted surgery.

PS-FH-AOP-2023 Logo
FH-PS-AOP challenge
Challenge User

Fetal Head and Pubic Symphysis Segmentation Challenge

shifts Logo
Shifts Challenge 2022
Challenge User

The goal of the Shifts Challenge 2022 is to raise awareness among the research community about the problems of distributional shift, robustness, and uncertainty estimation, and to identify new solutions to address them. The competition will consist of two new tracks: White Matter Multiple Sclerosis (MS) lesion segmentation in 3D Magnetic Resonance Imaging (MRI) of the brain and Marine cargo vessel power estimation.

MIDOG2022 Logo
MItosis DOmain Generalization Challenge 2022
Challenge User

isles22 Logo
Ischemic Stroke Lesion Segmentation Challenge
Challenge User

NeurIPS22-CellSeg Logo
Cell Segmentation in Multi-modality Microscopy Images
Challenge User

Weakly Supervised Cell Segmentation in Multi-modality High-resolution Microscopy Images

bci Logo
Breast Cancer Immunohistochemical Image Generation Challenge
Challenge User

The Breast Cancer Immunohistochemical Image Generation Challenge aims to directly generate IHC-stained breast cancer histopathology images from HE-stained images.

AUTO-RTP Logo
Fully Automated Radiotherapy Treatment Planning Challenge
Challenge User

Evaluating fully automated external beam radiotherapy treatment planning in prostate cancer

2023PAIP Logo
PAIP 2023: TC prediction in pancreatic and colon cancer
Challenge User

Tumor cellularity prediction in pancreatic cancer (supervised learning) and colon cancer (transfer learning)

SNEMI3D Logo
SNEMI3D: 3D Segmentation of neurites in EM images
Challenge User

The challenge is organized in the context of the IEEE International Symposium on Biomedical Imaging, 2013. The old evaluation site (http://brainiac2.snemi3d.org/SNEMI3D/) will be replaced by this one.

HaN-Seg2023 Logo
The Head and Neck Organ-at-Risk CT & MR Segmentation Challenge
Challenge User

A semantic multimodal segmentation challenge comprising 30 organs at risk

RnR-ExM Logo
Robust Non-rigid Registration Challenge for Expansion Microscopy
Challenge User

XPRESS Logo
Xray Projectomic Reconstruction Extracting Segment with Skeleton
Challenge User

autoPET-II Logo
autoPET-II
Challenge User

Automated Lesion Segmentation in PET/CT - Domain Generalization

toothfairy Logo
ToothFairy: Cone-Beam Computed Tomography Segmentation Challenge
Challenge User

This is the first edition of the ToothFairy challenge organized by the University of Modena and Reggio Emilia with the collaboration of Raudboud University. This challenge aims at pushing the development of deep learning frameworks to segment the Inferior Alveolar Canal (IAC) by incrementally extending the amount of publicly available 3D-annotated Cone Beam Computed Tomography (CBCT) scans. CBCT modality is becoming increasingly important for treatment planning and diagnosis in implant dentistry and maxillofacial surgery. The three-dimensional information acquired with CBCT can be crucial to plan a vast number of surgical interventions with the aim of preserving noble anatomical structures such as the Inferior Alveolar Canal (IAC), which contains the homonymous nerve (Inferior Alveolar Nerve, IAN). Deep learning models can support medical personnel in surgical planning procedures by providing a voxel-level segmentation of the IAN automatically extracted from CBCT scans.

spider Logo
SPIDER
Challenge User

LNQ2023 Logo
LNQ2023
Challenge User

Accurate lymph node size estimation is critical for staging cancer patients, initial therapeutic management, and in longitudinal scans, assessing response to therapy. Current standard practice for quantifying lymph node size is based on a variety of criteria that use unidirectional or bidirectional measurements on just one or a few nodes, typically on just one axial slice. But humans have hundreds of lymph nodes, any number of which may be enlarged to various degrees due to disease or immune response. While a normal lymph node may be approximately 5mm in diameter, a diseased lymph node may be several cm in diameter. The mediastinum, the anatomical area between the lungs and around the heart, may contain ten or more lymph nodes, often with three or more enlarged greater than 1cm. Accurate segmentation in 3D would provide more information to evaluate lymph node disease.

ARCADE Logo
ARCADE-MICCAI2023
Challenge User

UltrasoundEnhance2023 Logo
Ultrasound Image Enhancement challenge 2023
Challenge User

MultiCenterAorta Logo
SEG.A. - Segmentation of the Aorta
Challenge User

Segmentation, modeling and visualization of the arterial tree are still a challenge in medical image analysis. The main track of this challenge deals with the fully automatic segmentation of the aortic vessel tree in computed tomography images. Optionally, teams can submit tailored solutions for meshing and visualization of the vessel tree.

SPPIN Logo
Surgical Planning in Pediatric Neuroblastoma
Challenge User

MedFM2023 Logo
Foundation Model Prompting for Medical Image Classification
Challenge User

The primary objective of this challenge is to promote the development and evaluation of model adaptation techniques for medical image classification to leverage the existing foundation models.

DENTEX Logo
DENTEX - MICCAI23
Challenge User

Dental Enumeration and Diagnosis on Panoramic X- rays Challenge

TopCoW23 Logo
Topology-Aware Anatomical Segmentation of the Circle of Willis
Challenge User

Segment the Circle of Willis (CoW) vessel components for both CTA and MRA

SegRap2023 Logo
SegRap 2023
Challenge User

A segmentation challenge with 200 patients (two modalities of CT images, 45 OARs and 2 GTVs).

LDCTIQAC2023 Logo
Low-dose Computed Tomography Perceptual Image Quality Assessment
Challenge User

CL-Detection2023 Logo
CL-Detection 2023
Challenge User

Cephalometric landmark detection in lateral x-ray images

surgtoolloc23 Logo
Endoscopic surgical tool localization using tool presence labels
Challenge User

OCELOT2023 Logo
OCELOT 2023: Cell Detection from Cell-Tissue Interaction
Challenge User

THOMPSON-Challenge Logo
The Trauma THOMPSON Challenge
Challenge User

BONBID-HIE2023 Logo
Hypoxic Ischemic Encephalopathy Lesion Segmentation Challenge
Challenge User

HNTSMRG24 Logo
Head and Neck Tumor Segmentation for MR-Guided Applications
Challenge User

This challenge focuses on developing algorithms to automatically segment head and neck cancer gross tumor volumes on multi-timepoint MRI

PANORAMA Logo
PANORAMA
Challenge User

Artificial Intelligence and Radiologists at Pancreatic Cancer Diagnosis in CT

ULS23 Logo
Universal Lesion Segmentation Challenge '23
Challenge User

JustRAIGS Logo
Justified Referral in AI Glaucoma Screening
Challenge User

lightmycells Logo
Light My Cells : Bright Field to Fluorescence Imaging Challenge
Challenge User

Join the Light My Cells France-Bioimaging challenge! Enhance biology and microscopy by contributing to the development of new image-to-image deep labelling methods. The task: predict the best-focused output images of several fluorescently labelled organelles from label-free transmitted light input images. Dive into the future of imaging with us! 🌐🔬 #LightMyCellsChallenge

DREAMING Logo
Diminished Reality for Emerging Applications in Medicine
Challenge User

The Diminished Reality for Emerging Applications in Medicine through Inpainting (DREAMING) challenge seeks to pioneer the integration of Diminished Reality (DR) into oral and maxillofacial surgery. While Augmented Reality (AR) has been extensively explored in medicine, DR remains largely uncharted territory. DR involves virtually removing real objects from the environment by replacing them with their background. Recent inpainting methods present an opportunity for real-time DR applications without scene knowledge. DREAMING focuses on implementing such methods to fill obscured regions in surgery scenes with realistic backgrounds, emphasizing the complex facial anatomy and patient diversity. The challenge provides a dataset of synthetic yet photorealistic surgery scenes featuring humans, simulating an operating room setting. Participants are tasked with developing algorithms that seamlessly remove disruptions caused by medical instruments and hands, offering surgeons an unimpeded view of the operative site.

ACOUSLIC-AI Logo
Abdominal Circumference Operator-agnostic UltraSound measurement
Challenge User

LEOPARD Logo
The LEOPARD Challenge
Challenge User

AutoPET-III Logo
AutoPET III
Challenge User

AI4Life-MDC24 Logo
AI4Life Microscopy Denoising Challenge
Challenge User

Wellcome to AI4Life-MDC24! In this challenge, we want to focus on an unsupervised denoising of microscopy images. By participating, researchers can contribute to a critical area of scientific research, aiding in interpreting microscopy images and potentially unlocking discoveries in biology and medicine.

ISLES-24 Logo
Ischemic Stroke Lesion Segmentation Challenge 2024
Challenge User

surgvu24 Logo
Surgical Visual Understanding
Challenge User

ToothFairy2 Logo
ToothFairy2: Multi-Structure Segmentation in CBCT Volumes
Challenge User

This is the second edition of the ToothFairy challenge organized by the University of Modena and Reggio Emilia with the collaboration of Radboud University Medical Center. The challenge is hosted by grand-challenge and is part of MICCAI2024.

PENGWIN Logo
Pelvic Bone Fragments with Injuries Segmentation Challenge
Challenge User

Pelvic fracture segmentation in CT and X-ray

AortaSeg24 Logo
Multi-Class Segmentation of Aortic Branches and Zones in CTA
Challenge User

3D Segmentation of Aortic Branches and Zones on Computed Tomography Angiography (CTA)

AIMS-TBI Logo
Automated Identification of Mod-Sev TBI Lesions
Challenge User

topcow24 Logo
TopCoW 2024 Challenge
Challenge User

Segment, classify, and detect the Circle of Willis (CoW) for both CTA and MRA

SynthRAD2025 Logo
SynthRAD2025
Challenge User

SynthRAD is the first challenge on automatic generation of synthetic computed tomography (sCT) for radiotherapy

SELMA3D Logo
Self-supervised learning for 3D light-sheet microscopy image seg
Challenge User

COSAS Logo
Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation
Challenge User

CURVAS Logo
Calibration and Uncertainty for multiRater Volume Assessment in
Challenge User

MONKEY Logo
MONKEY challenge: Detection of inflammation in kidney biopsies
Challenge User

MONKEY (Machine-learning for Optimal detection of iNflammatory cells in KidnEY)

PUMA Logo
PUMA: Panoptic segmentation of nUclei and tissue in MelanomA
Challenge User

The PUMA Challenge aims to enhance nuclei and tissue segmentation in melanoma histopathology, addressing the need for better prognostic biomarkers to predict treatment responses. Melanoma, a highly aggressive skin cancer, often requires immune checkpoint inhibition therapy, but only half of patients respond. Prognostic biomarkers like tumor infiltrating lymphocytes (TILs) correlate with better therapy responses and lower recurrence rate, but manual TIL scoring is subjective and inconsistent. Current deep learning methods underperform. The PUMA dataset includes annotated primary and metastatic melanoma regions to improve segmentation techniques. The challenge includes two tracks with tasks focused on tissue and nuclei segmentation, encouraging advanced methods to improve predictive accuracy.

BONBID-HIE2024 Logo
2nd BONBID-HIE Challenge for HIE Outcome Prediction and Lesion S
Challenge User

FuseMyCells Logo
Fuse My Cells: From Single View to Fused Multiview Lightsheet Im
Challenge User