Your mugshot

Rintu Kutum

rintu.kutum

  •  India
  •  Ashoka University
  •  Department of Computer Science
  •  Website
Statistics
  • Member for 3 years

Activity Overview

BreastPathQ Logo
BreastPathQ: Cancer Cellularity Challenge 2019
Challenge User

SPIE-AAPM-NCI BreastPathQ:Cancer Circularity Challenge 2019: Participants will be tasked to develop an automated method for analyzing histology patches extracted from whole slide images and assign a score reflecting cancer cellularity for tumor burden assessment in each.

tiger Logo
TIGER
Challenge User

Grand challenge on automate assessment of tumor infiltrating lymphocytes in digital pathology slides of triple negative and Her2-positive breast cancers

CoNIC-Challenge Logo
CoNIC 2022
Challenge User

Colon Nuclei Identification and Counting Challenge 2022

NeurIPS22-CellSeg Logo
Cell Segmentation in Multi-modality Microscopy Images
Challenge User

Weakly Supervised Cell Segmentation in Multi-modality High-resolution Microscopy Images

2023PAIP Logo
PAIP 2023: TC prediction in pancreatic and colon cancer
Challenge User

Tumor cellularity prediction in pancreatic cancer (supervised learning) and colon cancer (transfer learning)

MedFM2023 Logo
Foundation Model Prompting for Medical Image Classification
Challenge User

The primary objective of this challenge is to promote the development and evaluation of model adaptation techniques for medical image classification to leverage the existing foundation models.

OCELOT2023 Logo
OCELOT 2023: Cell Detection from Cell-Tissue Interaction
Challenge User

CHAIMELEON Logo
CHAIMELEON Open Challenges
Challenge User

A unique opportunity for scientists to advance cancer research with AI. The CHAIMELEON Open Challenges invites participants to collaborate to develop and train new AI-powered solutions driving innovation in cancer diagnosis and treatment.

ULS23 Logo
Universal Lesion Segmentation Challenge '23
Challenge User

lightmycells Logo
Light My Cells : Bright Field to Fluorescence Imaging Challenge
Challenge User

Join the Light My Cells France-Bioimaging challenge! Enhance biology and microscopy by contributing to the development of new image-to-image deep labelling methods. The task: predict the best-focused output images of several fluorescently labelled organelles from label-free transmitted light input images. Dive into the future of imaging with us! 🌐🔬 #LightMyCellsChallenge

LEOPARD Logo
The LEOPARD Challenge
Challenge User

PENGWIN Logo
Pelvic Bone Fragments with Injuries Segmentation Challenge
Challenge User

Pelvic fracture segmentation in CT and X-ray

MONKEY Logo
MONKEY challenge: Detection of inflammation in kidney biopsies
Challenge User

MONKEY (Machine-learning for Optimal detection of iNflammatory cells in KidnEY)

PUMA Logo
PUMA: Panoptic segmentation of nUclei and tissue in MelanomA
Challenge User

The PUMA Challenge aims to enhance nuclei and tissue segmentation in melanoma histopathology, addressing the need for better prognostic biomarkers to predict treatment responses. Melanoma, a highly aggressive skin cancer, often requires immune checkpoint inhibition therapy, but only half of patients respond. Prognostic biomarkers like tumor infiltrating lymphocytes (TILs) correlate with better therapy responses and lower recurrence rate, but manual TIL scoring is subjective and inconsistent. Current deep learning methods underperform. The PUMA dataset includes annotated primary and metastatic melanoma regions to improve segmentation techniques. The challenge includes two tracks with tasks focused on tissue and nuclei segmentation, encouraging advanced methods to improve predictive accuracy.

FuseMyCells Logo
Fuse My Cells: From Single View to Fused Multiview Lightsheet Im
Challenge User