Your mugshot

Numan Saeed

Numi

  •  United Arab Emirates
  •  MBZUAI
  •  Machine Learning
Statistics
  • Member for 2 years, 11 months
  • 17 challenge submissions

Activity Overview

autoPET Logo
autoPET
Challenge User

Automatic lesion segmentation in whole-body FDG-PET/CT

HECKTOR Logo
MICCAI HECKTOR 2022
Challenge User

Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT Images

AMOS22 Logo
Multi-Modality Abdominal Multi-Organ Segmentation Challenge 2022
Challenge User

vessel-wall-segmentation-2022 Logo
Carotid Vessel Wall Segmentation and Atherosclerosis Diagnosis
Challenge User

HaN-Seg2023 Logo
The Head and Neck Organ-at-Risk CT & MR Segmentation Challenge
Challenge User

A semantic multimodal segmentation challenge comprising 30 organs at risk

autoPET-II Logo
autoPET-II
Challenge User

Automated Lesion Segmentation in PET/CT - Domain Generalization

CHAIMELEON Logo
CHAIMELEON Open Challenges
Challenge User

A unique opportunity for scientists to advance cancer research with AI. The CHAIMELEON Open Challenges invites participants to collaborate to develop and train new AI-powered solutions driving innovation in cancer diagnosis and treatment.

LEOPARD Logo
The LEOPARD Challenge
Challenge User

AutoPET-III Logo
AutoPET III
Challenge User

LUNA25 Logo
The LUNA25 Challenge
Challenge User

workshop2025 Logo
Challenge Hosting Masterclass 2025
Challenge User

HECKTOR25 Logo
HEad and neCK TumOR Lesion Segmentation, Diagnosis and Prognosis
Challenge Editor

HECKTOR 2025 is the next iteration of a medical imaging challenge focused on improving automated analysis of head and neck cancer using multimodal PET/CT data. The challenge features three complementary tasks that span the clinical workflow: automatic detection and segmentation of primary tumors and lymph nodes, prediction of recurrence-free survival using imaging and clinical data, and diagnosis of HPV status, which is crucial for treatment decisions. The 2025 edition significantly expands on previous challenges with a larger dataset exceeding, refined evaluation metrics that better assess both detection and segmentation capabilities, and the addition of radiotherapy planning dose maps as an information channel. This challenge aims to advance the development of clinical tools that can aid in treatment planning, outcome prediction, and diagnosis in head and neck cancer patients, ultimately supporting more personalized patient management approaches.