Your mugshot

Zdravko Marinov

zdravko.marinov

  •  Germany
  •  Karlsruhe Institute of Technology
  •  Computer Vision Lab cv:hci
  •  Website
Statistics
  • Member for 2 years, 11 months
  • 24 challenge submissions
  • 33 algorithms run

Activity Overview

VESSEL12 Logo
VESSEL12
Challenge User

The VESSEL12 challenge compares methods for automatic (and semi-automatic) segmentation of blood vessels in the lungs from CT images.

CAUSE07 Logo
CAUSE07
Challenge User

The goal of CAUSE07 is to compare different algorithms to segment the caudate nucleaus from brain MRI scans.

LUNA16 Logo
LUNA16
Challenge User

The LUNA16 challenge: automatic nodule detection on chest CT

IDRiD Logo
IDRiD
Challenge User

This challenge evaluates automated techniques for analysis of fundus photographs. We target segmentation of retinal lesions like exudates, microaneurysms, and hemorrhages and detection of the optic disc and fovea. Also, we seek grading of fundus images according to the severity level of DR and DME.

drive Logo
DRIVE
Challenge User

Develop a system to automatically segment vessels in human retina fundus images.

REFUGE Logo
REFUGE
Challenge User

The goal of the Retinal Fundus Glaucoma Challenge (REFUGE) is to evaluate and compare automated algorithms for glaucoma detection and optic disc/cup segmentation on a common dataset of retinal fundus images.

PALM Logo
PALM
Challenge User

The Pathologic Myopia Challenge (PALM) focuses on the investigation and development of algorithms associated with the diagnosis of Pathological Myopia (PM) and segmentation of lesions in fundus photos from PM patients.

PAIP2019 Logo
PAIP 2019
Challenge User

PAIP2019: Liver Cancer Segmentation Task 1: Liver Cancer Segmentation Task 2: Viable Tumor Burden Estimation

AMD Logo
iChallenge-AMD
Challenge User

Age-related Macular Degeneration Challenge

RibFrac Logo
RibFrac
Challenge User

Rib Fracture Detection and Classification Challenge: A large-scale benchmark of 660 CT scans with ~5,000 rib fractures (around 80Gb)

VALDO Logo
Where is VALDO?
Challenge User

Vascular Lesion Detection Challenge at MICCAI 2021

crossMoDA Logo
Cross-Modality Domain Adaptation Image Segmentation - 2021
Challenge User

The CrossMoDA challenge 2021 introduces the first large and multi-class medical dataset for unsupervised cross-modality Domain Adaptation.

BrainPTM-2021 Logo
BrainPTM 2021
Challenge User

Brain Pre-surgical Tractography Mapping (BrainPTM) in real clinical scans.

kipa22 Logo
KiPA22 (Regular Challenge)
Challenge User

The challenge is aimed to segment kidney, renal tumors, arteries, and veins from computed tomography angiography (CTA) images in one inference.

instance Logo
INSTANCE2022
Challenge User

The 2022 Intracranial Hemorrhage Segmentation Challenge on Non-Contrast head CT (NCCT)

ATLAS Logo
ATLAS R2.0 - Stroke Lesion Segmentation
Challenge User

Anatomical Tracings of Lesions After Stroke

3DTeethSeg Logo
3D Teeth Scan Segmentation and Labeling Challenge MICCAI2022
Challenge User

Computer-aided design (CAD) tools have become increasingly popular in modern dentistry for highly accurate treatment planning. In particular, in orthodontic CAD systems, advanced intraoral scanners (IOSs) are now widely used as they provide precise digital surface models of the dentition. Such models can dramatically help dentists simulate teeth extraction, move, deletion, and rearrangement and therefore ease the prediction of treatment outcomes. Although IOSs are becoming widespread in clinical dental practice, there are only few contributions on teeth segmentation/labeling available in the literature and no publicly available database. A fundamental issue that appears with IOS data is the ability to reliably segment and identify teeth in scanned observations. Teeth segmentation and labelling is difficult as a result of the inherent similarities between teeth shapes as well as their ambiguous positions on jaws.

autoPET Logo
autoPET
Challenge User

Automatic lesion segmentation in whole-body FDG-PET/CT

AMOS22 Logo
Multi-Modality Abdominal Multi-Organ Segmentation Challenge 2022
Challenge User

vessel-wall-segmentation-2022 Logo
Carotid Vessel Wall Segmentation and Atherosclerosis Diagnosis
Challenge User

crossmoda2022 Logo
Cross-Modality Domain Adaptation: Segmentation & Classification
Challenge User

The CrossMoDA 2022 challenge is the second edition of the first large and multi-class medical dataset for unsupervised cross-modality Domain Adaptation.

autoPET-II Logo
autoPET-II
Challenge User

Automated Lesion Segmentation in PET/CT - Domain Generalization

ULS23 Logo
Universal Lesion Segmentation Challenge '23
Challenge User

AutoPET-III Logo
AutoPET III
Challenge User

ISLES-24 Logo
Ischemic Stroke Lesion Segmentation Challenge 2024
Challenge User

PENGWIN Logo
Pelvic Bone Fragments with Injuries Segmentation Challenge
Challenge User

Pelvic fracture segmentation in CT and X-ray

workshop2025 Logo
Challenge Hosting Masterclass 2025
Challenge User

HECKTOR25 Logo
HEad and neCK TumOR Lesion Segmentation, Diagnosis and Prognosis
Challenge User

HECKTOR 2025 is the next iteration of a medical imaging challenge focused on improving automated analysis of head and neck cancer using multimodal PET/CT data. The challenge features three complementary tasks that span the clinical workflow: automatic detection and segmentation of primary tumors and lymph nodes, prediction of recurrence-free survival using imaging and clinical data, and diagnosis of HPV status, which is crucial for treatment decisions. The 2025 edition significantly expands on previous challenges with a larger dataset exceeding, refined evaluation metrics that better assess both detection and segmentation capabilities, and the addition of radiotherapy planning dose maps as an information channel. This challenge aims to advance the development of clinical tools that can aid in treatment planning, outcome prediction, and diagnosis in head and neck cancer patients, ultimately supporting more personalized patient management approaches.

DEEP-PSMA Logo
Deep-learning Evaluation for Enhanced Prognostics - PSMA PET
Challenge User

PANTHER Logo
PANTHER Challenge
Challenge User

autopet-iv Logo
autoPET/CT IV
Challenge Editor

Automated Lesion Segmentation in PET/CT - The human frontier

AIMS-TBI25 Logo
Automated Identification of Mod-Sev TBI Lesions 2025
Challenge User

ToothFairy3 Logo
ToothFairy3: Multi-Class Segmentation in CBCT Volumes
Challenge Editor

ToothFairy3, part of the ODIN2025 challenge cluster at MICCAI2025, advances CBCT segmentation with an expanded 77-class dataset and a new emphasis on computational efficiency. It introduces two tasks: a runtime-aware multi-structure segmentation and a novel interactive track for Inferior Alveolar Canal (IAC) segmentation using minimal user input. The challenge supports the development of both automated and prompt-based interactive AI tools to enhance clinical workflows in dentistry and maxillofacial surgery.