Your mugshot

Yihao Ma

Mamaa

  •  China
  •  Guizhou Medical University
  •  School of Biology and Engineering
Statistics
  • Member for 2 years, 2 months
  • 63 challenge submissions
  • 26 algorithms run

Activity Overview

PROMISE12 Logo
PROMISE12
Challenge User

The goal of this challenge is to compare interactive and (semi)-automatic segmentation algorithms for MRI of the prostate.

ANHIR Logo
ANHIR
Challenge User

The challenge focuses on comparing the accuracy (using manually annotated landmarks) and the approximate speed of automatic non-linear registration methods for aligning microscopy images of multi-stained histology tissue samples.

RIADD Logo
RIADD (ISBI-2021)
Challenge User

Retinal Image Analysis for multi-Disease Detection

PI-CAI Logo
The PI-CAI Challenge
Challenge User

Artificial Intelligence and Radiologists at Prostate Cancer Detection in MRI

BCNB Logo
BCNB
Challenge User

Early Breast Cancer Core-Needle Biopsy WSI Dataset

bci Logo
Breast Cancer Immunohistochemical Image Generation Challenge
Challenge User

The Breast Cancer Immunohistochemical Image Generation Challenge aims to directly generate IHC-stained breast cancer histopathology images from HE-stained images.

HaN-Seg2023 Logo
The Head and Neck Organ-at-Risk CT & MR Segmentation Challenge
Challenge User

A semantic multimodal segmentation challenge comprising 30 organs at risk

LNQ2023 Logo
LNQ2023
Challenge User

Accurate lymph node size estimation is critical for staging cancer patients, initial therapeutic management, and in longitudinal scans, assessing response to therapy. Current standard practice for quantifying lymph node size is based on a variety of criteria that use unidirectional or bidirectional measurements on just one or a few nodes, typically on just one axial slice. But humans have hundreds of lymph nodes, any number of which may be enlarged to various degrees due to disease or immune response. While a normal lymph node may be approximately 5mm in diameter, a diseased lymph node may be several cm in diameter. The mediastinum, the anatomical area between the lungs and around the heart, may contain ten or more lymph nodes, often with three or more enlarged greater than 1cm. Accurate segmentation in 3D would provide more information to evaluate lymph node disease.

ARCADE Logo
ARCADE-MICCAI2023
Challenge User

MedFM2023 Logo
Foundation Model Prompting for Medical Image Classification
Challenge User

The primary objective of this challenge is to promote the development and evaluation of model adaptation techniques for medical image classification to leverage the existing foundation models.

SegRap2023 Logo
SegRap 2023
Challenge User

A segmentation challenge with 200 patients (two modalities of CT images, 45 OARs and 2 GTVs).

BONBID-HIE2023 Logo
Hypoxic Ischemic Encephalopathy Lesion Segmentation Challenge
Challenge User

HNTSMRG24 Logo
Head and Neck Tumor Segmentation for MR-Guided Applications
Challenge User

This challenge focuses on developing algorithms to automatically segment head and neck cancer gross tumor volumes on multi-timepoint MRI

PANORAMA Logo
PANORAMA
Challenge User

Artificial Intelligence and Radiologists at Pancreatic Cancer Diagnosis in CT

ULS23 Logo
Universal Lesion Segmentation Challenge '23
Challenge User

JustRAIGS Logo
Justified Referral in AI Glaucoma Screening
Challenge User

lightmycells Logo
Light My Cells : Bright Field to Fluorescence Imaging Challenge
Challenge User

Join the Light My Cells France-Bioimaging challenge! Enhance biology and microscopy by contributing to the development of new image-to-image deep labelling methods. The task: predict the best-focused output images of several fluorescently labelled organelles from label-free transmitted light input images. Dive into the future of imaging with us! 🌐🔬 #LightMyCellsChallenge

DREAMING Logo
Diminished Reality for Emerging Applications in Medicine
Challenge User

The Diminished Reality for Emerging Applications in Medicine through Inpainting (DREAMING) challenge seeks to pioneer the integration of Diminished Reality (DR) into oral and maxillofacial surgery. While Augmented Reality (AR) has been extensively explored in medicine, DR remains largely uncharted territory. DR involves virtually removing real objects from the environment by replacing them with their background. Recent inpainting methods present an opportunity for real-time DR applications without scene knowledge. DREAMING focuses on implementing such methods to fill obscured regions in surgery scenes with realistic backgrounds, emphasizing the complex facial anatomy and patient diversity. The challenge provides a dataset of synthetic yet photorealistic surgery scenes featuring humans, simulating an operating room setting. Participants are tasked with developing algorithms that seamlessly remove disruptions caused by medical instruments and hands, offering surgeons an unimpeded view of the operative site.

ACOUSLIC-AI Logo
Abdominal Circumference Operator-agnostic UltraSound measurement
Challenge User

AutoPET-III Logo
AutoPET III
Challenge User

AI4Life-MDC24 Logo
AI4Life Microscopy Denoising Challenge
Challenge User

Wellcome to AI4Life-MDC24! In this challenge, we want to focus on an unsupervised denoising of microscopy images. By participating, researchers can contribute to a critical area of scientific research, aiding in interpreting microscopy images and potentially unlocking discoveries in biology and medicine.

PENGWIN Logo
Pelvic Bone Fragments with Injuries Segmentation Challenge
Challenge User

Pelvic fracture segmentation in CT and X-ray

AortaSeg24 Logo
Multi-Class Segmentation of Aortic Branches and Zones in CTA
Challenge User

3D Segmentation of Aortic Branches and Zones on Computed Tomography Angiography (CTA)

COSAS Logo
Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation
Challenge User

CURVAS Logo
Calibration and Uncertainty for multiRater Volume Assessment in
Challenge User

MONKEY Logo
MONKEY challenge: Detection of inflammation in kidney biopsies
Challenge User

MONKEY (Machine-learning for Optimal detection of iNflammatory cells in KidnEY)