Hi Nuno,
This is the stderr of your last submission:
2022-02-21T20:35:24+00:00 /home/algorithm/.local/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:35: DeprecationWarning: 'np.float' is a deprecated alias for the builtin 'float'. To silence this warning, use 'float' by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use 'np.float64' here.
2022-02-21T20:35:24+00:00 Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
2022-02-21T20:35:24+00:00 eps=np.finfo(np.float).eps,
2022-02-21T20:35:24+00:00 /home/algorithm/.local/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:597: DeprecationWarning: 'np.float' is a deprecated alias for the builtin 'float'. To silence this warning, use 'float' by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use 'np.float64' here.
2022-02-21T20:35:24+00:00 Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
2022-02-21T20:35:24+00:00 eps=np.finfo(np.float).eps, copy_X=True, fit_path=True,
2022-02-21T20:35:24+00:00 /home/algorithm/.local/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:836: DeprecationWarning: 'np.float' is a deprecated alias for the builtin 'float'. To silence this warning, use 'float' by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use 'np.float64' here.
2022-02-21T20:35:24+00:00 Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
2022-02-21T20:35:24+00:00 eps=np.finfo(np.float).eps, copy_X=True, fit_path=True,
2022-02-21T20:35:24+00:00 /home/algorithm/.local/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:862: DeprecationWarning: 'np.float' is a deprecated alias for the builtin 'float'. To silence this warning, use 'float' by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use 'np.float64' here.
2022-02-21T20:35:24+00:00 Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
2022-02-21T20:35:24+00:00 eps=np.finfo(np.float).eps, positive=False):
2022-02-21T20:35:24+00:00 /home/algorithm/.local/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:1097: DeprecationWarning: 'np.float' is a deprecated alias for the builtin 'float'. To silence this warning, use 'float' by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use 'np.float64' here.
2022-02-21T20:35:24+00:00 Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
2022-02-21T20:35:24+00:00 max_n_alphas=1000, n_jobs=None, eps=np.finfo(np.float).eps,
2022-02-21T20:35:24+00:00 /home/algorithm/.local/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:1344: DeprecationWarning: 'np.float' is a deprecated alias for the builtin 'float'. To silence this warning, use 'float' by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use 'np.float64' here.
2022-02-21T20:35:24+00:00 Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
2022-02-21T20:35:24+00:00 max_n_alphas=1000, n_jobs=None, eps=np.finfo(np.float).eps,
2022-02-21T20:35:24+00:00 /home/algorithm/.local/lib/python3.7/site-packages/sklearn/linear_model/least_angle.py:1480: DeprecationWarning: 'np.float' is a deprecated alias for the builtin 'float'. To silence this warning, use 'float' by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use 'np.float64' here.
2022-02-21T20:35:24+00:00 Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
2022-02-21T20:35:24+00:00 eps=np.finfo(np.float).eps, copy_X=True, positive=False):
2022-02-21T20:35:24+00:00 /home/algorithm/.local/lib/python3.7/site-packages/sklearn/linear_model/randomized_l1.py:152: DeprecationWarning: 'np.float' is a deprecated alias for the builtin 'float'. To silence this warning, use 'float' by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use 'np.float64' here.
2022-02-21T20:35:24+00:00 Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
2022-02-21T20:35:24+00:00 precompute=False, eps=np.finfo(np.float).eps,
2022-02-21T20:35:24+00:00 /home/algorithm/.local/lib/python3.7/site-packages/sklearn/linear_model/randomized_l1.py:320: DeprecationWarning: 'np.float' is a deprecated alias for the builtin 'float'. To silence this warning, use 'float' by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use 'np.float64' here.
2022-02-21T20:35:24+00:00 Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
2022-02-21T20:35:24+00:00 eps=np.finfo(np.float).eps, random_state=None,
2022-02-21T20:35:24+00:00 /home/algorithm/.local/lib/python3.7/site-packages/sklearn/linear_model/randomized_l1.py:580: DeprecationWarning: 'np.float' is a deprecated alias for the builtin 'float'. To silence this warning, use 'float' by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use 'np.float64' here.
2022-02-21T20:35:24+00:00 Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
2022-02-21T20:35:24+00:00 eps=4 * np.finfo(np.float).eps, n_jobs=None,
2022-02-21T20:35:24+00:00 /home/algorithm/.local/lib/python3.7/site-packages/sklearn/decomposition/online_lda.py:31: DeprecationWarning: 'np.float' is a deprecated alias for the builtin 'float'. To silence this warning, use 'float' by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use 'np.float64' here.
2022-02-21T20:35:24+00:00 Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
2022-02-21T20:35:24+00:00 EPS = np.finfo(np.float).eps
2022-02-21T20:35:35+00:00
0%| | 0/234 [00:00<?, ?it/s]
1%|▏ | 3/234 [00:00<00:08, 25.74it/s]
3%|▎ | 6/234 [00:00<00:08, 27.32it/s]
4%|▍ | 9/234 [00:00<00:10, 21.97it/s]
5%|▌ | 12/234 [00:00<00:09, 22.98it/s]
6%|▋ | 15/234 [00:00<00:09, 24.32it/s]
8%|▊ | 18/234 [00:00<00:10, 21.44it/s]
9%|▉ | 22/234 [00:00<00:08, 25.04it/s]
11%|█ | 25/234 [00:01<00:09, 22.63it/s]
12%|█▏ | 28/234 [00:01<00:08, 23.60it/s]
13%|█▎ | 31/234 [00:01<00:08, 24.35it/s]
15%|█▍ | 34/234 [00:01<00:07, 25.22it/s]
16%|█▌ | 37/234 [00:01<00:08, 22.09it/s]
17%|█▋ | 40/234 [00:01<00:08, 23.40it/s]
18%|█▊ | 43/234 [00:01<00:09, 20.88it/s]
20%|██ | 47/234 [00:02<00:07, 23.45it/s]
21%|██▏ | 50/234 [00:02<00:08, 21.87it/s]
23%|██▎ | 54/234 [00:02<00:07, 24.58it/s]
24%|██▍ | 57/234 [00:02<00:08, 22.04it/s]
26%|██▌ | 60/234 [00:02<00:07, 23.03it/s]
27%|██▋ | 63/234 [00:02<00:07, 24.27it/s]
29%|██▊ | 67/234 [00:02<00:06, 25.93it/s]
30%|██▉ | 70/234 [00:03<00:07, 22.83it/s]
32%|███▏ | 74/234 [00:03<00:06, 23.28it/s]
33%|███▎ | 77/234 [00:03<00:06, 24.73it/s]
35%|███▍ | 81/234 [00:03<00:05, 27.34it/s]
36%|███▌ | 84/234 [00:03<00:05, 26.93it/s]
38%|███▊ | 88/234 [00:03<00:04, 29.49it/s]
39%|███▉ | 92/234 [00:03<00:04, 30.81it/s]
41%|████ | 96/234 [00:03<00:04, 27.85it/s]
42%|████▏ | 99/234 [00:04<00:04, 27.76it/s]
44%|████▎ | 102/234 [00:04<00:04, 28.01it/s]
45%|████▌ | 106/234 [00:04<00:04, 30.75it/s]
47%|████▋ | 110/234 [00:04<00:04, 27.20it/s]
49%|████▊ | 114/234 [00:04<00:04, 29.46it/s]
50%|█████ | 118/234 [00:04<00:03, 31.02it/s]
52%|█████▏ | 122/234 [00:04<00:03, 28.60it/s]
53%|█████▎ | 125/234 [00:04<00:04, 23.48it/s]
55%|█████▍ | 128/234 [00:05<00:04, 23.98it/s]
56%|█████▋ | 132/234 [00:05<00:03, 26.69it/s]
58%|█████▊ | 135/234 [00:05<00:04, 24.17it/s]
59%|█████▉ | 139/234 [00:05<00:03, 26.37it/s]
61%|██████ | 142/234 [00:05<00:03, 27.07it/s]
62%|██████▏ | 145/234 [00:05<00:03, 26.36it/s]
63%|██████▎ | 148/234 [00:05<00:03, 23.25it/s]
65%|██████▍ | 152/234 [00:06<00:03, 26.54it/s]
66%|██████▌ | 155/234 [00:06<00:03, 26.30it/s]
68%|██████▊ | 159/234 [00:06<00:02, 26.24it/s]
70%|██████▉ | 163/234 [00:06<00:02, 28.67it/s]
71%|███████ | 166/234 [00:06<00:02, 28.34it/s]
72%|███████▏ | 169/234 [00:06<00:02, 27.54it/s]
74%|███████▎ | 172/234 [00:06<00:02, 24.27it/s]
75%|███████▍ | 175/234 [00:06<00:02, 24.73it/s]
76%|███████▌ | 178/234 [00:06<00:02, 25.75it/s]
78%|███████▊ | 182/234 [00:07<00:01, 28.85it/s]
79%|███████▉ | 185/234 [00:07<00:01, 27.75it/s]
81%|████████ | 189/234 [00:07<00:01, 30.69it/s]
82%|████████▏ | 193/234 [00:07<00:01, 29.48it/s]
84%|████████▍ | 197/234 [00:07<00:01, 28.71it/s]
86%|████████▌ | 201/234 [00:07<00:01, 28.12it/s]
87%|████████▋ | 204/234 [00:07<00:01, 27.81it/s]
88%|████████▊ | 207/234 [00:07<00:00, 27.61it/s]
90%|█████████ | 211/234 [00:08<00:00, 30.19it/s]
92%|█████████▏| 215/234 [00:08<00:00, 27.77it/s]
93%|█████████▎| 218/234 [00:08<00:00, 27.15it/s]
95%|█████████▍| 222/234 [00:08<00:00, 28.22it/s]
96%|█████████▌| 225/234 [00:08<00:00, 28.42it/s]
98%|█████████▊| 229/234 [00:08<00:00, 26.42it/s]
99%|█████████▉| 232/234 [00:08<00:00, 27.10it/s]
100%|██████████| 234/234 [00:08<00:00, 26.07it/s]
2022-02-21T20:35:35+00:00 Traceback (most recent call last):
2022-02-21T20:35:35+00:00 File "/opt/conda/lib/python3.7/runpy.py", line 193, in _run_module_as_main
2022-02-21T20:35:35+00:00 "__main__", mod_spec)
2022-02-21T20:35:35+00:00 File "/opt/conda/lib/python3.7/runpy.py", line 85, in _run_code
2022-02-21T20:35:35+00:00 exec(code, run_globals)
2022-02-21T20:35:35+00:00 File "/opt/algorithm/process.py", line 475, in <module>
2022-02-21T20:35:35+00:00 airogs_algorithm().process()
2022-02-21T20:35:35+00:00 File "/home/algorithm/.local/lib/python3.7/site-packages/evalutils/evalutils.py", line 183, in process
2022-02-21T20:35:35+00:00 self.process_cases()
2022-02-21T20:35:35+00:00 File "/home/algorithm/.local/lib/python3.7/site-packages/evalutils/evalutils.py", line 191, in process_cases
2022-02-21T20:35:35+00:00 self._case_results.append(self.process_case(idx=idx, case=case))
2022-02-21T20:35:35+00:00 File "/opt/algorithm/process.py", line 416, in process_case
2022-02-21T20:35:35+00:00 results = self.predict(images=torch.vstack(images))
2022-02-21T20:35:35+00:00 File "/opt/algorithm/process.py", line 437, in predict
2022-02-21T20:35:35+00:00 batch_predictions = self.model.forward(images).detach().cpu().float().numpy()
2022-02-21T20:35:35+00:00 File "/opt/algorithm/process.py", line 292, in forward
2022-02-21T20:35:35+00:00 x = self.model(x)
2022-02-21T20:35:35+00:00 File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
2022-02-21T20:35:35+00:00 return forward_call(*input, **kwargs)
2022-02-21T20:35:35+00:00 File "/opt/algorithm/process.py", line 142, in forward
2022-02-21T20:35:35+00:00 x = self.forward_features(x)
2022-02-21T20:35:35+00:00 File "/opt/algorithm/process.py", line 138, in forward_features
2022-02-21T20:35:35+00:00 x = self.stages[i](x)
2022-02-21T20:35:35+00:00 File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
2022-02-21T20:35:35+00:00 return forward_call(*input, **kwargs)
2022-02-21T20:35:35+00:00 File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/container.py", line 141, in forward
2022-02-21T20:35:35+00:00 input = module(input)
2022-02-21T20:35:35+00:00 File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
2022-02-21T20:35:35+00:00 return forward_call(*input, **kwargs)
2022-02-21T20:35:35+00:00 File "/opt/algorithm/process.py", line 68, in forward
2022-02-21T20:35:35+00:00 x = self.act(x)
2022-02-21T20:35:35+00:00 File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
2022-02-21T20:35:35+00:00 return forward_call(*input, **kwargs)
2022-02-21T20:35:35+00:00 File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/activation.py", line 652, in forward
2022-02-21T20:35:35+00:00 return F.gelu(input)
2022-02-21T20:35:35+00:00 File "/opt/conda/lib/python3.7/site-packages/torch/nn/functional.py", line 1556, in gelu
2022-02-21T20:35:35+00:00 return torch._C._nn.gelu(input)
2022-02-21T20:35:35+00:00 RuntimeError: CUDA out of memory. Tried to allocate 4.11 GiB (GPU 0; 14.76 GiB total capacity; 11.03 GiB already allocated; 2.57 GiB free; 11.04 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
Best regards,
Coen