Dear Eugene,
The failed submission submitted 4 hours ago gave as error the following message: "RuntimeError: data type not supported".
I paste here the Stdout and the Stderr, hoping they will be helpful:
2023-07-10T03:25:59.376000+00:00
2023-07-10T03:25:59.376000+00:00
2023-07-10T03:25:59.376000+00:00 Please cite the following paper when using nnUNet:
2023-07-10T03:25:59.376000+00:00
2023-07-10T03:25:59.376000+00:00 Isensee, F., Jaeger, P.F., Kohl, S.A.A. et al. "nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation." Nat Methods (2020). https://doi.org/10.1038/s41592-020-01008-z
2023-07-10T03:25:59.376000+00:00
2023-07-10T03:25:59.376000+00:00
2023-07-10T03:25:59.376000+00:00 If you have questions or suggestions, feel free to open an issue at https://github.com/MIC-DKFZ/nnUNet
2023-07-10T03:25:59.376000+00:00
2023-07-10T03:25:59.376000+00:00 nnUNet_preprocessed is not defined and nnU-Net can not be used for preprocessing or training. If this is not intended, please read documentation/setting_up_paths.md for information on how to set this up.
2023-07-10T03:25:59.376000+00:00 emptying cuda cache
2023-07-10T03:25:59.376000+00:00 loading parameters for folds, 0
2023-07-10T03:25:59.377000+00:00 using the following model files: ['/opt/app/checkpoints/nnUNet/3d_fullres/Task700_SEG_A_2023/BigResUNetTrainerV4_base_lr0001_00001_ft__nnUNetPlansv2.1/fold_0/model_final_checkpoint.model']
2023-07-10T03:25:59.377000+00:00 starting prediction...
2023-07-10T03:25:59.377000+00:00 preprocessing [PosixPath('/input/images/ct/bc5eae0e-1bc8-468a-98a2-00547e42ed2c.mha')]
2023-07-10T03:25:59.377000+00:00 using preprocessor GenericPreprocessor
2023-07-10T03:25:59.377000+00:00 before crop: (1, 399, 512, 512) after crop: (1, 399, 512, 512) spacing: [1.5 0.828125 0.828125]
2023-07-10T03:25:59.377000+00:00
2023-07-10T03:25:59.377000+00:00 separate z, order in z is 0 order inplane is 3
2023-07-10T03:25:59.377000+00:00 separate z, order in z is 0 order inplane is 1
2023-07-10T03:25:59.377000+00:00 before: {'spacing': array([1.5 , 0.828125, 0.828125]), 'spacing_transposed': array([1.5 , 0.828125, 0.828125]), 'data.shape (data is transposed)': (1, 399, 512, 512)}
2023-07-10T03:25:59.377000+00:00 after: {'spacing': array([2.98504508, 0.73242188, 0.73242188]), 'data.shape (data is resampled)': (1, 200, 579, 579)}
2023-07-10T03:25:59.377000+00:00
2023-07-10T03:25:59.377000+00:00 (1, 200, 579, 579)
2023-07-10T03:25:59.377000+00:00 Preprocess_patient time: 42.972883224487305
2023-07-10T03:25:59.377000+00:00 predicting /output/images/aorta-segmentation/BigResUNetTrainerV4_base_lr0001_00001_ft__nnUNetPlansv2.1/bc5eae0e-1bc8-468a-98a2-00547e42ed2c.mha
2023-07-10T03:25:59.377000+00:00 patch_size: [ 64 160 160]
2023-07-10T03:25:59.377000+00:00 debug: mirroring True mirror_axes (0, 1, 2)
2023-07-10T03:25:59.377000+00:00 step_size: 0.5
2023-07-10T03:25:59.377000+00:00 do mirror: True
2023-07-10T03:25:59.377000+00:00 data shape: (1, 200, 579, 579)
2023-07-10T03:25:59.377000+00:00 patch size: [ 64 160 160]
2023-07-10T03:25:59.377000+00:00 steps (x, y, and z): [[0, 27, 54, 82, 109, 136], [0, 70, 140, 210, 279, 349, 419], [0, 70, 140, 210, 279, 349, 419]]
2023-07-10T03:25:59.377000+00:00 number of tiles: 294
2023-07-10T03:25:59.377000+00:00 computing Gaussian
2023-07-10T03:25:59.377000+00:00 done
2023-07-10T03:25:59.377000+00:00 initializing result array (on GPU)
2023-07-10T03:25:59.377000+00:00 moving data to GPU
2023-07-10T03:25:59.377000+00:00 initializing result_numsamples (on GPU)
2023-07-10T03:25:59.377000+00:00 copying results to CPU
2023-07-10T03:25:59.377000+00:00 prediction done
2023-07-10T03:25:59.377000+00:00 force_separate_z: None interpolation order: 1
2023-07-10T03:25:59.377000+00:00 separate z: True lowres axis [0]
2023-07-10T03:25:59.377000+00:00 separate z, order in z is 0 order inplane is 1
2023-07-10T03:25:59.376000+00:00 Traceback (most recent call last):
2023-07-10T03:25:59.376000+00:00 File "/opt/conda/lib/python3.8/runpy.py", line 194, in _run_module_as_main
2023-07-10T03:25:59.376000+00:00 return _run_code(code, main_globals, None,
2023-07-10T03:25:59.376000+00:00 File "/opt/conda/lib/python3.8/runpy.py", line 87, in _run_code
2023-07-10T03:25:59.376000+00:00 exec(code, run_globals)
2023-07-10T03:25:59.376000+00:00 File "/opt/app/process.py", line 167, in <module>
2023-07-10T03:25:59.376000+00:00 Segaalgorithm().process()
2023-07-10T03:25:59.376000+00:00 File "/home/user/.local/lib/python3.8/site-packages/evalutils/evalutils.py", line 183, in process
2023-07-10T03:25:59.376000+00:00 self.process_cases()
2023-07-10T03:25:59.376000+00:00 File "/opt/app/process.py", line 121, in process_cases
2023-07-10T03:25:59.376000+00:00 predict_cases(model_folder_name, list_of_lists, output_dir, folds,
2023-07-10T03:25:59.376000+00:00 File "/opt/app/predict.py", line 263, in predict_cases
2023-07-10T03:25:59.376000+00:00 results.append(save_segmentation_nifti_from_softmax(softmax, output_filename, dct, interpolation_order,
2023-07-10T03:25:59.376000+00:00 File "/home/user/.local/lib/python3.8/site-packages/nnunet/inference/segmentation_export.py", line 107, in save_segmentation_nifti_from_softmax
2023-07-10T03:25:59.376000+00:00 seg_old_spacing = resample_data_or_seg(segmentation_softmax, shape_original_after_cropping, is_seg=False,
2023-07-10T03:25:59.376000+00:00 File "/home/user/.local/lib/python3.8/site-packages/nnunet/preprocessing/preprocessing.py", line 173, in resample_data_or_seg
2023-07-10T03:25:59.376000+00:00 reshaped_final_data.append(map_coordinates(reshaped_data, coord_map, order=order_z,
2023-07-10T03:25:59.376000+00:00 File "/home/user/.local/lib/python3.8/site-packages/scipy/ndimage/_interpolation.py", line 459, in map_coordinates
2023-07-10T03:25:59.376000+00:00 _nd_image.geometric_transform(filtered, None, coordinates, None, None,
2023-07-10T03:25:59.376000+00:00 RuntimeError: data type not supported
Best
SEG.A. Team