I paste here all the information I get, I hope this answer your question :)
Stdout:
2023-08-14T18:49:38.942000+00:00 nnUNet_raw is not defined and nnU-Net can only be used on data for which preprocessed files are already present on your system. nnU-Net cannot be used for experiment planning and preprocessing like this. If this is not intended, please read documentation/setting_up_paths.md for information on how to set this up properly.
2023-08-14T18:49:38.942000+00:00 nnUNet_preprocessed is not defined and nnU-Net can not be used for preprocessing or training. If this is not intended, please read documentation/setting_up_paths.md for information on how to set this up.
2023-08-14T18:49:38.942000+00:00 nnUNet_results is not defined and nnU-Net cannot be used for training or inference. If this is not intended behavior, please read documentation/setting_up_paths.md for information on how to set this up.
2023-08-14T18:49:38.942000+00:00 input FILES ['c61c27ee-fd41-4c28-8b87-33cff36059bc.mha']
2023-08-14T18:49:38.942000+00:00 hash -1774304799504854648
2023-08-14T18:49:38.942000+00:00 path /input/images/ct/c61c27ee-fd41-4c28-8b87-33cff...
2023-08-14T18:49:38.942000+00:00 Name: 0, dtype: object
2023-08-14T18:49:38.942000+00:00 0
2023-08-14T18:49:38.942000+00:00 Image Name c61c27ee-fd41-4c28-8b87-33cff36059bc.mha
2023-08-14T18:49:38.942000+00:00 Working on device: cuda
2023-08-14T18:49:38.942000+00:00 Model_1 input files ['test_1_0000.nrrd']
2023-08-14T18:49:38.942000+00:00 There are 1 cases in the source folder
2023-08-14T18:49:38.942000+00:00 I am process 0 out of 1 (max process ID is 0, we start counting with 0!)
2023-08-14T18:49:38.942000+00:00 There are 1 cases that I would like to predict
2023-08-14T18:50:02.948000+00:00 nnUNet_raw is not defined and nnU-Net can only be used on data for which preprocessed files are already present on your system. nnU-Net cannot be used for experiment planning and preprocessing like this. If this is not intended, please read documentation/setting_up_paths.md for information on how to set this up properly.
2023-08-14T18:50:02.948000+00:00 nnUNet_preprocessed is not defined and nnU-Net can not be used for preprocessing or training. If this is not intended, please read documentation/setting_up_paths.md for information on how to set this up.
2023-08-14T18:50:05.948000+00:00
2023-08-14T18:50:05.948000+00:00 Predicting test_1:
2023-08-14T18:50:05.948000+00:00 perform_everything_on_gpu: True
2023-08-14T18:50:05.948000+00:00 Input shape: torch.Size([1, 180, 234, 234])
2023-08-14T18:50:05.948000+00:00 step_size: 0.5
2023-08-14T18:50:05.948000+00:00 mirror_axes: (0, 1, 2)
2023-08-14T18:50:05.948000+00:00 n_steps 18, image size is torch.Size([180, 234, 234]), tile_size [128, 128, 128], tile_step_size 0.5
2023-08-14T18:50:05.948000+00:00 steps:
2023-08-14T18:50:05.948000+00:00 [[0, 52], [0, 53, 106], [0, 53, 106]]
2023-08-14T18:50:05.948000+00:00 preallocating arrays
2023-08-14T18:50:05.948000+00:00 running prediction
2023-08-14T18:50:21.953000+00:00 Input shape: torch.Size([1, 180, 234, 234])
2023-08-14T18:50:21.953000+00:00 step_size: 0.5
2023-08-14T18:50:21.953000+00:00 mirror_axes: (0, 1, 2)
2023-08-14T18:50:21.953000+00:00 n_steps 18, image size is torch.Size([180, 234, 234]), tile_size [128, 128, 128], tile_step_size 0.5
2023-08-14T18:50:21.953000+00:00 steps:
2023-08-14T18:50:21.953000+00:00 [[0, 52], [0, 53, 106], [0, 53, 106]]
2023-08-14T18:50:21.953000+00:00 preallocating arrays
2023-08-14T18:50:21.953000+00:00 running prediction
2023-08-14T18:50:35.956000+00:00 Input shape: torch.Size([1, 180, 234, 234])
2023-08-14T18:50:35.957000+00:00 step_size: 0.5
2023-08-14T18:50:35.957000+00:00 mirror_axes: (0, 1, 2)
2023-08-14T18:50:35.957000+00:00 n_steps 18, image size is torch.Size([180, 234, 234]), tile_size [128, 128, 128], tile_step_size 0.5
2023-08-14T18:50:35.957000+00:00 steps:
2023-08-14T18:50:35.957000+00:00 [[0, 52], [0, 53, 106], [0, 53, 106]]
2023-08-14T18:50:35.957000+00:00 preallocating arrays
2023-08-14T18:50:35.957000+00:00 running prediction
2023-08-14T18:50:49.960000+00:00 Input shape: torch.Size([1, 180, 234, 234])
2023-08-14T18:50:49.960000+00:00 step_size: 0.5
2023-08-14T18:50:49.960000+00:00 mirror_axes: (0, 1, 2)
2023-08-14T18:50:49.960000+00:00 n_steps 18, image size is torch.Size([180, 234, 234]), tile_size [128, 128, 128], tile_step_size 0.5
2023-08-14T18:50:49.960000+00:00 steps:
2023-08-14T18:50:49.960000+00:00 [[0, 52], [0, 53, 106], [0, 53, 106]]
2023-08-14T18:50:49.960000+00:00 preallocating arrays
2023-08-14T18:50:49.960000+00:00 running prediction
2023-08-14T18:51:04.964000+00:00 Input shape: torch.Size([1, 180, 234, 234])
2023-08-14T18:51:04.964000+00:00 step_size: 0.5
2023-08-14T18:51:04.964000+00:00 mirror_axes: (0, 1, 2)
2023-08-14T18:51:04.964000+00:00 n_steps 18, image size is torch.Size([180, 234, 234]), tile_size [128, 128, 128], tile_step_size 0.5
2023-08-14T18:51:04.964000+00:00 steps:
2023-08-14T18:51:04.964000+00:00 [[0, 52], [0, 53, 106], [0, 53, 106]]
2023-08-14T18:51:04.964000+00:00 preallocating arrays
2023-08-14T18:51:04.964000+00:00 running prediction
Stderr:
2023-08-14T18:50:20.952000+00:00
2023-08-14T18:50:20.952000+00:00 0%| | 0/18 [00:00<?, ?it/s]
2023-08-14T18:50:20.952000+00:00 6%|▌ | 1/18 [00:01<00:33, 2.00s/it]
2023-08-14T18:50:20.952000+00:00 11%|█ | 2/18 [00:02<00:20, 1.29s/it]
2023-08-14T18:50:20.952000+00:00 17%|█▋ | 3/18 [00:03<00:15, 1.06s/it]
2023-08-14T18:50:20.952000+00:00 22%|██▏ | 4/18 [00:04<00:13, 1.06it/s]
2023-08-14T18:50:20.952000+00:00 28%|██▊ | 5/18 [00:05<00:11, 1.12it/s]
2023-08-14T18:50:20.952000+00:00 33%|███▎ | 6/18 [00:05<00:10, 1.17it/s]
2023-08-14T18:50:20.952000+00:00 39%|███▉ | 7/18 [00:06<00:09, 1.20it/s]
2023-08-14T18:50:20.952000+00:00 44%|████▍ | 8/18 [00:07<00:08, 1.22it/s]
2023-08-14T18:50:20.952000+00:00 50%|█████ | 9/18 [00:08<00:07, 1.24it/s]
2023-08-14T18:50:20.952000+00:00 56%|█████▌ | 10/18 [00:09<00:06, 1.25it/s]
2023-08-14T18:50:20.952000+00:00 61%|██████ | 11/18 [00:09<00:05, 1.26it/s]
2023-08-14T18:50:20.952000+00:00 67%|██████▋ | 12/18 [00:10<00:04, 1.26it/s]
2023-08-14T18:50:20.952000+00:00 72%|███████▏ | 13/18 [00:11<00:03, 1.27it/s]
2023-08-14T18:50:20.952000+00:00 78%|███████▊ | 14/18 [00:12<00:03, 1.27it/s]
2023-08-14T18:50:20.952000+00:00 83%|████████▎ | 15/18 [00:12<00:02, 1.27it/s]
2023-08-14T18:50:20.952000+00:00 89%|████████▉ | 16/18 [00:13<00:01, 1.27it/s]
2023-08-14T18:50:20.952000+00:00 94%|█████████▍| 17/18 [00:14<00:00, 1.27it/s]
2023-08-14T18:50:20.952000+00:00 100%|██████████| 18/18 [00:15<00:00, 1.27it/s]
2023-08-14T18:50:20.952000+00:00 100%|██████████| 18/18 [00:15<00:00, 1.17it/s]
2023-08-14T18:50:34.956000+00:00
2023-08-14T18:50:34.956000+00:00 0%| | 0/18 [00:00<?, ?it/s]
2023-08-14T18:50:34.956000+00:00 6%|▌ | 1/18 [00:00<00:07, 2.42it/s]
2023-08-14T18:50:34.956000+00:00 11%|█ | 2/18 [00:01<00:10, 1.58it/s]
2023-08-14T18:50:34.956000+00:00 17%|█▋ | 3/18 [00:01<00:10, 1.42it/s]
2023-08-14T18:50:34.956000+00:00 22%|██▏ | 4/18 [00:02<00:10, 1.36it/s]
2023-08-14T18:50:34.956000+00:00 28%|██▊ | 5/18 [00:03<00:09, 1.32it/s]
2023-08-14T18:50:34.956000+00:00 33%|███▎ | 6/18 [00:04<00:09, 1.31it/s]
2023-08-14T18:50:34.956000+00:00 39%|███▉ | 7/18 [00:05<00:08, 1.29it/s]
2023-08-14T18:50:34.956000+00:00 44%|████▍ | 8/18 [00:05<00:07, 1.29it/s]
2023-08-14T18:50:34.956000+00:00 50%|█████ | 9/18 [00:06<00:07, 1.28it/s]
2023-08-14T18:50:34.956000+00:00 56%|█████▌ | 10/18 [00:07<00:06, 1.28it/s]
2023-08-14T18:50:34.956000+00:00 61%|██████ | 11/18 [00:08<00:05, 1.27it/s]
2023-08-14T18:50:34.956000+00:00 67%|██████▋ | 12/18 [00:09<00:04, 1.27it/s]
2023-08-14T18:50:34.956000+00:00 72%|███████▏ | 13/18 [00:09<00:03, 1.27it/s]
2023-08-14T18:50:34.956000+00:00 78%|███████▊ | 14/18 [00:10<00:03, 1.27it/s]
2023-08-14T18:50:34.956000+00:00 83%|████████▎ | 15/18 [00:11<00:02, 1.27it/s]
2023-08-14T18:50:34.956000+00:00 89%|████████▉ | 16/18 [00:12<00:01, 1.27it/s]
2023-08-14T18:50:34.956000+00:00 94%|█████████▍| 17/18 [00:13<00:00, 1.27it/s]
2023-08-14T18:50:34.956000+00:00 100%|██████████| 18/18 [00:13<00:00, 1.27it/s]
2023-08-14T18:50:34.956000+00:00 100%|██████████| 18/18 [00:13<00:00, 1.30it/s]
2023-08-14T18:50:49.960000+00:00
2023-08-14T18:50:49.960000+00:00 0%| | 0/18 [00:00<?, ?it/s]
2023-08-14T18:50:49.960000+00:00 6%|▌ | 1/18 [00:00<00:07, 2.38it/s]
2023-08-14T18:50:49.960000+00:00 11%|█ | 2/18 [00:01<00:10, 1.57it/s]
2023-08-14T18:50:49.960000+00:00 17%|█▋ | 3/18 [00:02<00:10, 1.41it/s]
2023-08-14T18:50:49.960000+00:00 22%|██▏ | 4/18 [00:02<00:10, 1.35it/s]
2023-08-14T18:50:49.960000+00:00 28%|██▊ | 5/18 [00:03<00:09, 1.32it/s]
2023-08-14T18:50:49.960000+00:00 33%|███▎ | 6/18 [00:04<00:09, 1.30it/s]
2023-08-14T18:50:49.960000+00:00 39%|███▉ | 7/18 [00:05<00:08, 1.29it/s]
2023-08-14T18:50:49.960000+00:00 44%|████▍ | 8/18 [00:05<00:07, 1.28it/s]
2023-08-14T18:50:49.960000+00:00 50%|█████ | 9/18 [00:06<00:07, 1.28it/s]
2023-08-14T18:50:49.960000+00:00 56%|█████▌ | 10/18 [00:07<00:06, 1.27it/s]
2023-08-14T18:50:49.960000+00:00 61%|██████ | 11/18 [00:08<00:05, 1.27it/s]
2023-08-14T18:50:49.960000+00:00 67%|██████▋ | 12/18 [00:09<00:04, 1.27it/s]
2023-08-14T18:50:49.960000+00:00 72%|███████▏ | 13/18 [00:09<00:03, 1.27it/s]
2023-08-14T18:50:49.960000+00:00 78%|███████▊ | 14/18 [00:10<00:03, 1.26it/s]
2023-08-14T18:50:49.960000+00:00 83%|████████▎ | 15/18 [00:11<00:02, 1.26it/s]
2023-08-14T18:50:49.960000+00:00 89%|████████▉ | 16/18 [00:12<00:01, 1.26it/s]
2023-08-14T18:50:49.960000+00:00 94%|█████████▍| 17/18 [00:13<00:00, 1.26it/s]
2023-08-14T18:50:49.960000+00:00 100%|██████████| 18/18 [00:13<00:00, 1.26it/s]
2023-08-14T18:50:49.960000+00:00 100%|██████████| 18/18 [00:13<00:00, 1.30it/s]
2023-08-14T18:51:03.963000+00:00
2023-08-14T18:51:03.964000+00:00 0%| | 0/18 [00:00<?, ?it/s]
2023-08-14T18:51:03.964000+00:00 6%|▌ | 1/18 [00:00<00:07, 2.40it/s]
2023-08-14T18:51:03.964000+00:00 11%|█ | 2/18 [00:01<00:10, 1.56it/s]
2023-08-14T18:51:03.964000+00:00 17%|█▋ | 3/18 [00:02<00:10, 1.41it/s]
2023-08-14T18:51:03.964000+00:00 22%|██▏ | 4/18 [00:02<00:10, 1.35it/s]
2023-08-14T18:51:03.964000+00:00 28%|██▊ | 5/18 [00:03<00:09, 1.31it/s]
2023-08-14T18:51:03.964000+00:00 33%|███▎ | 6/18 [00:04<00:09, 1.29it/s]
2023-08-14T18:51:03.964000+00:00 39%|███▉ | 7/18 [00:05<00:08, 1.28it/s]
2023-08-14T18:51:03.964000+00:00 44%|████▍ | 8/18 [00:05<00:07, 1.27it/s]
2023-08-14T18:51:03.964000+00:00 50%|█████ | 9/18 [00:06<00:07, 1.27it/s]
2023-08-14T18:51:03.964000+00:00 56%|█████▌ | 10/18 [00:07<00:06, 1.27it/s]
2023-08-14T18:51:03.964000+00:00 61%|██████ | 11/18 [00:08<00:05, 1.26it/s]
2023-08-14T18:51:03.964000+00:00 67%|██████▋ | 12/18 [00:09<00:04, 1.26it/s]
2023-08-14T18:51:03.964000+00:00 72%|███████▏ | 13/18 [00:09<00:03, 1.26it/s]
2023-08-14T18:51:03.964000+00:00 78%|███████▊ | 14/18 [00:10<00:03, 1.26it/s]
2023-08-14T18:51:03.964000+00:00 83%|████████▎ | 15/18 [00:11<00:02, 1.26it/s]
2023-08-14T18:51:03.964000+00:00 89%|████████▉ | 16/18 [00:12<00:01, 1.26it/s]
2023-08-14T18:51:03.964000+00:00 94%|█████████▍| 17/18 [00:13<00:00, 1.26it/s]
2023-08-14T18:51:03.964000+00:00 100%|██████████| 18/18 [00:13<00:00, 1.26it/s]
2023-08-14T18:51:03.964000+00:00 100%|██████████| 18/18 [00:13<00:00, 1.29it/s]
2023-08-14T18:51:18.968000+00:00
2023-08-14T18:51:18.968000+00:00 0%| | 0/18 [00:00<?, ?it/s]
2023-08-14T18:51:18.968000+00:00 6%|▌ | 1/18 [00:00<00:07, 2.38it/s]
2023-08-14T18:51:18.968000+00:00 11%|█ | 2/18 [00:01<00:10, 1.56it/s]
2023-08-14T18:51:18.968000+00:00 17%|█▋ | 3/18 [00:02<00:10, 1.41it/s]
2023-08-14T18:51:18.968000+00:00 22%|██▏ | 4/18 [00:02<00:10, 1.34it/s]
2023-08-14T18:51:18.968000+00:00 28%|██▊ | 5/18 [00:03<00:09, 1.31it/s]
2023-08-14T18:51:18.968000+00:00 33%|███▎ | 6/18 [00:04<00:09, 1.29it/s]
2023-08-14T18:51:18.968000+00:00 39%|███▉ | 7/18 [00:05<00:08, 1.28it/s]
2023-08-14T18:51:18.968000+00:00 44%|████▍ | 8/18 [00:05<00:07, 1.27it/s]
2023-08-14T18:51:18.968000+00:00 50%|█████ | 9/18 [00:06<00:07, 1.27it/s]
2023-08-14T18:51:18.968000+00:00 56%|█████▌ | 10/18 [00:07<00:06, 1.26it/s]
2023-08-14T18:51:18.968000+00:00 61%|██████ | 11/18 [00:08<00:05, 1.26it/s]
2023-08-14T18:51:18.968000+00:00 67%|██████▋ | 12/18 [00:09<00:04, 1.26it/s]
2023-08-14T18:51:18.968000+00:00 72%|███████▏ | 13/18 [00:09<00:03, 1.26it/s]
2023-08-14T18:51:18.968000+00:00 78%|███████▊ | 14/18 [00:10<00:03, 1.26it/s]
2023-08-14T18:51:18.968000+00:00 83%|████████▎ | 15/18 [00:11<00:02, 1.25it/s]
2023-08-14T18:51:18.968000+00:00 89%|████████▉ | 16/18 [00:12<00:01, 1.25it/s]
2023-08-14T18:51:18.968000+00:00 94%|█████████▍| 17/18 [00:13<00:00, 1.25it/s]
2023-08-14T18:51:18.968000+00:00 100%|██████████| 18/18 [00:13<00:00, 1.25it/s]
2023-08-14T18:51:18.968000+00:00 100%|██████████| 18/18 [00:13<00:00, 1.29it/s]
2023-08-14T18:51:42.973000+00:00 Bus error (core dumped)
Best
Gian