Your mugshot

murong wang

latexers

Statistics
  • Member for 6 years, 6 months

Activity Overview

ICIAR2018-Challenge Logo
ICIAR 2018
Challenge User

Can you develop a method for automatic detection of cancerous regions in breast cancer histology images?

SLIVER07 Logo
SLIVER07
Challenge User

The goal of this competition is to compare different algorithms to segment the liver from clinical 3D computed tomography (CT) scans.

drive Logo
DRIVE
Challenge User

Develop a system to automatically segment vessels in human retina fundus images.

PAIP2019 Logo
PAIP 2019
Challenge User

PAIP2019: Liver Cancer Segmentation Task 1: Liver Cancer Segmentation Task 2: Viable Tumor Burden Estimation

DigestPath2019 Logo
DigestPath2019
Challenge User

Welcome to Digestive-System Pathological Detection and Segmentation Challenge 2019. This competition is part of the MICCAI 2019 Challenge.

odir2019 Logo
ODIR-2019
Challenge User

北京大学国际眼底图像智能识别竞赛 Peking University International Competition on Ocular Disease Intelligent Recognition

ECDP2020 Logo
HEROHE
Challenge User

Unlike previous challenges, this proposes to find an image analysis algorithm to identify HER2-positive from HER2-negative breast cancer specimens evaluating only the morphological features present on the HE slide, without the staining patterns of IHC.

EndoCV Logo
EndoCV2020
Challenge User

Endoscopy computer vision challenge (EndoCV2020) introduces two core sub-themes in endoscopy: 1) artefact detection and segmentation (EAD2020) and 2) disease detection and segmentation (EDD2020).

LNDb Logo
LNDb Challenge
Challenge User

Lung cancer screening and Fleischner follow-up determination in chest CT through nodule detection, segmentation and characterization

PAIP2020 Logo
PAIP2020
Challenge User

Built on the success of its predecessor, PAIP2020 is the second challenge organized by the Pathology AI Platform (PAIP) and the Seoul National University Hospital (SNUH). PAIP2020 will proceed to not only detect whole tumor areas in colorectal cancers but also to classify their molecular subtypes, which will lead to characterization of their heterogeneity with respect to prognoses and therapeutic responses. All participants should predict one of the molecular carcinogenesis pathways, i.e., microsatellite instability(MSI) in colorectal cancer, by performing digital image analysis without clinical tests. This task has a high clinical relevance as the currently used procedure requires an extensive microscopic assessment by pathologists. Therefore, those automated algorithms would reduce the workload of pathologists as a diagnostic assistance.

RibFrac Logo
RibFrac
Challenge User

Rib Fracture Detection and Classification Challenge: A large-scale benchmark of 660 CT scans with ~5,000 rib fractures (around 80Gb)

TN-SCUI2020 Logo
Thyroid Nodule Segmentation and Classification
Challenge User

The main topic of this TN-SCUI2020 challenge is finding automatic algorithms to accurately classify the thyroid nodules in ultrasound images. It will provide the biggest public dataset of thyroid nodule with over 4500 patient cases from different ages, genders, and were collected using different ultrasound machines. Each ultrasound image is provided with its ground truth class (benign or maglinant) and a detailed delineation of the nodule. This challenge will provide a unique opportunity for participants from different backgrounds (e.g. academia, industry, and government, etc.) to compare their algorithms in an impartial way.

SARAS-ESAD
Challenge User

This challenge is part of Medical Imaging with Deep Learning conference, 2020. The conference is held between 6 ‑ 8 July 2020 in Montréal. The SARAS (Smart Autonomous Robotic Assistant Surgeon) EU consortium, www.saras-project.eu, is working towards replacing the assistant surgeon in MIS with two assistive robotic arms. To accomplish that, an artificial intelligence based system is required which not only can understand the complete surgical scene but also detect the actions being performed by the main surgeon. This information can later be used infer the response required from the autonomous assistant surgeon.

SurgVisDom
Challenge User

AutoImplant Logo
AutoImplant
Challenge User

the MICCAI 2020 Cranial Implant Design Challenge

qubiq Logo
QUBIQ
Challenge User

Quantification of Uncertainties in Biomedical Image Segmentation Challenge

covid-segmentation Logo
COVID-19 LUNG CT LESION SEGMENTATION CHALLENGE - 2020
Challenge User

This challenge will create the platform to evaluate emerging methods for the segmentation and quantification of lung lesions caused by SARS-CoV-2 infection from CT images.

SegPC-2021 Logo
SegPC-2021
Challenge User

This challenge is positioned towards robust segmentation of cells which is the first stage to build such a tool for plasma cell cancer, namely, Multiple Myeloma (MM), which is a type of blood cancer.

PAIP2021 Logo
PAIP2021
Challenge User

PAIP 2021 Challenge; Perineural invasion in multiple organ cancer (colon, prostate and pancreatobiliary tract)

FLARE Logo
FLARE21
Challenge User

Fast and Low GPU memory Abdominal oRgan sEgmentation Challenge

SARAS-MESAD Logo
SARAS-MESAD
Challenge User

This challenge is organized under MICCAI 2021, the 24th International Conference on Medical Image Computing and Computer Assisted Intervention. The event will be held from September 27th to October 1st 2021 in Strasbourg, France. The challenge focuses on multi-domain surgeon action detection.

QUBIQ21 Logo
QUBIQ2021
Challenge User

Quantification of Uncertainties in Biomedical Image Segmentation Challenge 2021

STOIC2021 Logo
STOIC2021 - COVID-19 AI Challenge
Challenge User

COVID-19 Artificial Intelligence Challenge: automated diagnosis, and prognostic evaluation based on computed tomography

PI-CAI Logo
The PI-CAI Challenge
Challenge User

Artificial Intelligence and Radiologists at Prostate Cancer Detection in MRI

CoNIC-Challenge Logo
CoNIC 2022
Challenge User

Colon Nuclei Identification and Counting Challenge 2022

BCNB Logo
BCNB
Challenge User

Early Breast Cancer Core-Needle Biopsy WSI Dataset

SynthRAD2023 Logo
SynthRAD2023
Challenge User

SynthRAD is the first challenge on automatic generation of synthetic computed tomography (sCT) for radiotherapy

3DTeethSeg Logo
3D Teeth Scan Segmentation and Labeling Challenge MICCAI2022
Challenge User

Computer-aided design (CAD) tools have become increasingly popular in modern dentistry for highly accurate treatment planning. In particular, in orthodontic CAD systems, advanced intraoral scanners (IOSs) are now widely used as they provide precise digital surface models of the dentition. Such models can dramatically help dentists simulate teeth extraction, move, deletion, and rearrangement and therefore ease the prediction of treatment outcomes. Although IOSs are becoming widespread in clinical dental practice, there are only few contributions on teeth segmentation/labeling available in the literature and no publicly available database. A fundamental issue that appears with IOS data is the ability to reliably segment and identify teeth in scanned observations. Teeth segmentation and labelling is difficult as a result of the inherent similarities between teeth shapes as well as their ambiguous positions on jaws.

autoPET Logo
autoPET
Challenge User

Automatic lesion segmentation in whole-body FDG-PET/CT

AMOS22 Logo
Multi-Modality Abdominal Multi-Organ Segmentation Challenge 2022
Challenge User

vessel-wall-segmentation-2022 Logo
Carotid Vessel Wall Segmentation and Atherosclerosis Diagnosis
Challenge User

ATM22 Logo
Multi-site, Multi-Domain Airway Tree Modeling (ATM’22)
Challenge User

Airway segmentation is a crucial step for the analysis of pulmonary diseases including asthma, bronchiectasis, and emphysema. The accurate segmentation based on X-Ray computed tomography (CT) enables the quantitative measurements of airway dimensions and wall thickness, which can reveal the abnormality of patients with chronic obstructive pulmonary disease (COPD). Besides, the extraction of patient-specific airway models from CT images is required for navigatiisted surgery.

isles22 Logo
Ischemic Stroke Lesion Segmentation Challenge
Challenge User

NeurIPS22-CellSeg Logo
Cell Segmentation in Multi-modality Microscopy Images
Challenge User

Weakly Supervised Cell Segmentation in Multi-modality High-resolution Microscopy Images

SNEMI3D Logo
SNEMI3D: 3D Segmentation of neurites in EM images
Challenge User

The challenge is organized in the context of the IEEE International Symposium on Biomedical Imaging, 2013. The old evaluation site (http://brainiac2.snemi3d.org/SNEMI3D/) will be replaced by this one.

toothfairy Logo
ToothFairy: Cone-Beam Computed Tomography Segmentation Challenge
Challenge User

This is the first edition of the ToothFairy challenge organized by the University of Modena and Reggio Emilia with the collaboration of Raudboud University. This challenge aims at pushing the development of deep learning frameworks to segment the Inferior Alveolar Canal (IAC) by incrementally extending the amount of publicly available 3D-annotated Cone Beam Computed Tomography (CBCT) scans. CBCT modality is becoming increasingly important for treatment planning and diagnosis in implant dentistry and maxillofacial surgery. The three-dimensional information acquired with CBCT can be crucial to plan a vast number of surgical interventions with the aim of preserving noble anatomical structures such as the Inferior Alveolar Canal (IAC), which contains the homonymous nerve (Inferior Alveolar Nerve, IAN). Deep learning models can support medical personnel in surgical planning procedures by providing a voxel-level segmentation of the IAN automatically extracted from CBCT scans.

spider Logo
SPIDER
Challenge User

ARCADE Logo
ARCADE-MICCAI2023
Challenge User

SPPIN Logo
Surgical Planning in Pediatric Neuroblastoma
Challenge User

MedFM2023 Logo
Foundation Model Prompting for Medical Image Classification
Challenge User

The primary objective of this challenge is to promote the development and evaluation of model adaptation techniques for medical image classification to leverage the existing foundation models.

DENTEX Logo
DENTEX - MICCAI23
Challenge User

Dental Enumeration and Diagnosis on Panoramic X- rays Challenge

TopCoW23 Logo
Topology-Aware Anatomical Segmentation of the Circle of Willis
Challenge User

Segment the Circle of Willis (CoW) vessel components for both CTA and MRA

SegRap2023 Logo
SegRap 2023
Challenge User

A segmentation challenge with 200 patients (two modalities of CT images, 45 OARs and 2 GTVs).

LEOPARD Logo
The LEOPARD Challenge
Challenge User

AutoPET-III Logo
AutoPET III
Challenge User

ToothFairy2 Logo
ToothFairy2: Multi-Structure Segmentation in CBCT Volumes
Challenge User

This is the second edition of the ToothFairy challenge organized by the University of Modena and Reggio Emilia with the collaboration of Radboud University Medical Center. The challenge is hosted by grand-challenge and is part of MICCAI2024.

MONKEY Logo
MONKEY challenge: Detection of inflammation in kidney biopsies
Challenge User

MONKEY (Machine-learning for Optimal detection of iNflammatory cells in KidnEY)

Pulmonary Lobe Segmentation Logo
Pulmonary Lobe Segmentation
Algorithm User

Automatic segmentation of pulmonary lobes on CT scans for patients with COPD or COVID-19.