Your mugshot

JUN MA

junma

  •  Canada
  •  University of Toronto
  •  Laboratory Medicine and Pathobiology
  •  Website
Statistics
  • Member for 6 years, 10 months
  • 145 challenge submissions
  • 3 algorithms run

Activity Overview

LUNA16 Logo
LUNA16
Archive User

888 CT scans from the LUNA16 challenge

STOIC2021 public training image Logo
STOIC2021 public training image
Archive User

One CT scan from the public STOIC2021 training set: https://registry.opendata.aws/stoic2021-training/

CORADS Score Practice Logo
CORADS Score Practice
Reader Study User

Practice CORADS scoring with 50 cases. You get instant feedback after every case.

VESSEL12 Logo
VESSEL12
Challenge User

The VESSEL12 challenge compares methods for automatic (and semi-automatic) segmentation of blood vessels in the lungs from CT images.

LOLA11 Logo
LOLA11
Challenge User

The goal of LOLA11 (LObe and Lung Analysis 2011) is to compare methods for (semi-)automatic segmentation of the lungs and lobes from chest computed tomography scans. Any team, whether from academia or industry, can join.

PROMISE12 Logo
PROMISE12
Challenge User

The goal of this challenge is to compare interactive and (semi)-automatic segmentation algorithms for MRI of the prostate.

LUNA16 Logo
LUNA16
Challenge User

The LUNA16 challenge: automatic nodule detection on chest CT

SLIVER07 Logo
SLIVER07
Challenge User

The goal of this competition is to compare different algorithms to segment the liver from clinical 3D computed tomography (CT) scans.

LUMIC Logo
LUMIC
Challenge User

The LUMIC challenge tests the accuracy in registration between pre- and post-contrast CT chest images for algorithms, using an anthropomophic digital phantom.

drive Logo
DRIVE
Challenge User

Develop a system to automatically segment vessels in human retina fundus images.

REFUGE Logo
REFUGE
Challenge User

The goal of the Retinal Fundus Glaucoma Challenge (REFUGE) is to evaluate and compare automated algorithms for glaucoma detection and optic disc/cup segmentation on a common dataset of retinal fundus images.

MoNuSeg Logo
MoNuSeg
Challenge User

MICCAI 2018 challenge for Multi-organ nuclei segmentation from H&E stained histopathological images.

PAVES Logo
PAVES
Challenge User

Peripheral Artery:Vein Enhanced Segmentation (PAVES) is the challenge focussed on providing easily interpretable and relevant images that can be readily understood by clinicians (vascular interventional radiologists & vascular surgeons) from MRA datasets where the venous and arterial vasculature may be equally enhanced. The setting is lower limb arterial occlusive disease where imaging of the below knee arterial vasculature is critical in planning limb salvage interventions. However, the competing demands of the high spatial resolution needed to image small vessels versus imaging time constraints where there is often a very short arteriovenous transit time for contrast passage form arterial to venous compartments makes imaging challenging. While dynamic MRA techniques can usually allow arterial imaging without venous ‘contamination’ these necessarily sacrifice spatial resolution.

PROSTATEx Logo
PROSTATEx
Challenge User

Classification of clinical significance of prostate lesions using multi-parametric MRI data

HC18 Logo
HC18
Challenge User

Automated measurement of fetal head circumference using 2D ultrasound images

ANHIR Logo
ANHIR
Challenge User

The challenge focuses on comparing the accuracy (using manually annotated landmarks) and the approximate speed of automatic non-linear registration methods for aligning microscopy images of multi-stained histology tissue samples.

CHAOS Logo
CHAOS
Challenge User

In this challenge, you segment the liver in CT data, and segment liver, spleen, and kidneys in MRI data.

PALM Logo
PALM
Challenge User

The Pathologic Myopia Challenge (PALM) focuses on the investigation and development of algorithms associated with the diagnosis of Pathological Myopia (PM) and segmentation of lesions in fundus photos from PM patients.

Decathlon-10 Logo
Decathlon
Challenge User

The Medical Segmentation Decathlon challenge tests the generalisability of machine learning algorithms when applied to 10 different semantic segmentation task.

KiTS19 Logo
KiTS19
Challenge User

2019 Kidney and Kidney Tumor Segmentation Challenge

PAIP2019 Logo
PAIP 2019
Challenge User

PAIP2019: Liver Cancer Segmentation Task 1: Liver Cancer Segmentation Task 2: Viable Tumor Burden Estimation

VerSe2019 Logo
VerSe`19
Challenge User

Vertebrae labelling and segmentation on a spine dataset on an unprecedented 150 CT scans with voxel-level vertebral annotations.

AMD Logo
iChallenge-AMD
Challenge User

Age-related Macular Degeneration Challenge

StructSeg2019 Logo
StructSeg2019
Challenge User

Welcome to Automatic Structure Segmentation for Radiotherapy Planning Challenge 2019. This competition is part of the MICCAI 2019 Challenge.

EndoCV Logo
EndoCV2020
Challenge User

Endoscopy computer vision challenge (EndoCV2020) introduces two core sub-themes in endoscopy: 1) artefact detection and segmentation (EAD2020) and 2) disease detection and segmentation (EDD2020).

LNDb Logo
LNDb Challenge
Challenge User

Lung cancer screening and Fleischner follow-up determination in chest CT through nodule detection, segmentation and characterization

VerSe2020 Logo
VerSe'20
Challenge User

Vertebrae labelling and segmentation on a multi-centre, multi-scanner, and anatomically-diverse CT dataset.

PAIP2020 Logo
PAIP2020
Challenge User

Built on the success of its predecessor, PAIP2020 is the second challenge organized by the Pathology AI Platform (PAIP) and the Seoul National University Hospital (SNUH). PAIP2020 will proceed to not only detect whole tumor areas in colorectal cancers but also to classify their molecular subtypes, which will lead to characterization of their heterogeneity with respect to prognoses and therapeutic responses. All participants should predict one of the molecular carcinogenesis pathways, i.e., microsatellite instability(MSI) in colorectal cancer, by performing digital image analysis without clinical tests. This task has a high clinical relevance as the currently used procedure requires an extensive microscopic assessment by pathologists. Therefore, those automated algorithms would reduce the workload of pathologists as a diagnostic assistance.

RibFrac Logo
RibFrac
Challenge User

Rib Fracture Detection and Classification Challenge: A large-scale benchmark of 660 CT scans with ~5,000 rib fractures (around 80Gb)

TN-SCUI2020 Logo
Thyroid Nodule Segmentation and Classification
Challenge User

The main topic of this TN-SCUI2020 challenge is finding automatic algorithms to accurately classify the thyroid nodules in ultrasound images. It will provide the biggest public dataset of thyroid nodule with over 4500 patient cases from different ages, genders, and were collected using different ultrasound machines. Each ultrasound image is provided with its ground truth class (benign or maglinant) and a detailed delineation of the nodule. This challenge will provide a unique opportunity for participants from different backgrounds (e.g. academia, industry, and government, etc.) to compare their algorithms in an impartial way.

Learn2Reg Logo
Learn2Reg
Challenge User

Challenge on medical image registration addressing: learning from small datasets; estimating large deformations; dealing with multi-modal scans; and learning from noisy annotations

Automated Segmentation Of Coronary Arteries
Challenge User

Automated Segmentation Of Coronary Arteries

SARAS-ESAD
Challenge User

This challenge is part of Medical Imaging with Deep Learning conference, 2020. The conference is held between 6 ‑ 8 July 2020 in Montréal. The SARAS (Smart Autonomous Robotic Assistant Surgeon) EU consortium, www.saras-project.eu, is working towards replacing the assistant surgeon in MIS with two assistive robotic arms. To accomplish that, an artificial intelligence based system is required which not only can understand the complete surgical scene but also detect the actions being performed by the main surgeon. This information can later be used infer the response required from the autonomous assistant surgeon.

SurgVisDom
Challenge User

CADA Logo
CADA
Challenge User

Cerebral aneurysms are local dilations of arterial blood vessels caused by a weakness of the vessel wall. Subarachnoid hemorrhage (SAH) caused by the rupture of a cerebral aneurysm is a life-threatening condition associated with high mortality and morbidity. The mortality rate is above 40%, and even in case of survival cognitive impairment can affect patients for a long time. Major goals in image analysis are the detection and risk assessment of aneurysms. We, therefore, subdivided the challenge into three categories. The first task is finding the aneurysm; the second task is the accurate segmentation to allow for a longitudinal assessment of the development of suspicious aneurysms. The third task is the estimation of the rupture risk of the aneurysm.

DFU2020 Logo
Diabetic Foot Ulcer Challenge 2020
Challenge User

Diabetic Foot Ulcer Challenge 2020

AutoImplant Logo
AutoImplant
Challenge User

the MICCAI 2020 Cranial Implant Design Challenge

CADA-RRE Logo
CADA - Rupture Risk Estimation
Challenge User

Cerebral aneurysms are local dilations of arterial blood vessels caused by a weakness of the vessel wall. Subarachnoid hemorrhage (SAH) caused by the rupture of a cerebral aneurysm is a life-threatening condition associated with high mortality and morbidity. The mortality rate is above 40%, and even in case of survival cognitive impairment can affect patients for a long time. Major goals in image analysis are the detection and risk assessment of aneurysms. We, therefore, subdivided the challenge into three categories. The first task is finding the aneurysm; the second task is the accurate segmentation to allow for a longitudinal assessment of the development of suspicious aneurysms. The third task is the estimation of the rupture risk of the aneurysm.

CADA-AS Logo
CADA - Aneurysm Segmentation
Challenge User

Cerebral aneurysms are local dilations of arterial blood vessels caused by a weakness of the vessel wall. Subarachnoid hemorrhage (SAH) caused by the rupture of a cerebral aneurysm is a life-threatening condition associated with high mortality and morbidity. The mortality rate is above 40%, and even in case of survival cognitive impairment can affect patients for a long time. Major goals in image analysis are the detection and risk assessment of aneurysms. We, therefore, subdivided the challenge into three categories. The first task is finding the aneurysm; the second task is the accurate segmentation to allow for a longitudinal assessment of the development of suspicious aneurysms. The third task is the estimation of the rupture risk of the aneurysm.

qubiq Logo
QUBIQ
Challenge User

Quantification of Uncertainties in Biomedical Image Segmentation Challenge

RIADD Logo
RIADD (ISBI-2021)
Challenge User

Retinal Image Analysis for multi-Disease Detection

MitoEM Logo
MitoEM
Challenge User

Large-scale 3D mitochondria instance segmentation benchmark

A-AFMA Logo
A-AFMA
Challenge User

Prenatal ultrasound (US) measurement of amniotic fluid is an important part of fetal surveillance as it provides a non-invasive way of assessing whether there is oligohydramnios (insufficient amniotic fluid) and polyhydramnios (excess amniotic fluid), which are associated with numerous problems both during pregnancy and after birth. In this Image Analysis Challenge, we aim to attract attention from the image analysis community to work on the problem of automated measurement of the MVP using the predefined ultrasound video clip based on a linear-sweep protocol [1]. We define two tasks. The first task is to automatically detect amniotic fluid and the maternal bladder. The second task is to identify the appropriate points for MVP measurement given the selected frame of the video clip, and calculate the length of the connected line between these points. The data was collected from women in the second trimester of pregnancy, as part of the PURE study at the John Radcliffe Hospital in Oxford, UK.

covid-segmentation Logo
COVID-19 LUNG CT LESION SEGMENTATION CHALLENGE - 2020
Challenge User

This challenge will create the platform to evaluate emerging methods for the segmentation and quantification of lung lesions caused by SARS-CoV-2 infection from CT images.

VALDO Logo
Where is VALDO?
Challenge User

Vascular Lesion Detection Challenge at MICCAI 2021

SegPC-2021 Logo
SegPC-2021
Challenge User

This challenge is positioned towards robust segmentation of cells which is the first stage to build such a tool for plasma cell cancer, namely, Multiple Myeloma (MM), which is a type of blood cancer.

EndoCV2021 Logo
EndoCV2021
Challenge User

Endoscopy Computer Vision Challenge 2021

FUSC Logo
Foot Ulcer Segmentation Challenge
Challenge User

Carotid Artery Vessel Wall Segmentation Challenge
Challenge User

To segment the vessel wall of the carotid artery on black-blood MRI images

crossMoDA Logo
Cross-Modality Domain Adaptation Image Segmentation - 2021
Challenge User

The CrossMoDA challenge 2021 introduces the first large and multi-class medical dataset for unsupervised cross-modality Domain Adaptation.

kits21 Logo
KiTS21
Challenge User

The 2021 MICCAI Kidney and Kidney Tumor Segmentation challenge

BrainPTM-2021 Logo
BrainPTM 2021
Challenge User

Brain Pre-surgical Tractography Mapping (BrainPTM) in real clinical scans.

PAIP2021 Logo
PAIP2021
Challenge User

PAIP 2021 Challenge; Perineural invasion in multiple organ cancer (colon, prostate and pancreatobiliary tract)

FLARE Logo
FLARE21
Challenge Editor

Fast and Low GPU memory Abdominal oRgan sEgmentation Challenge

feta Logo
FeTA - Fetal Tissue Annotation Challenge
Challenge User

Fetal Tissue Annotation Challenge

WSSS4LUAD Logo
WSSS4LUAD
Challenge User

The WSSS4LUAD dataset contains over 10,000 patches of lung adenocarcinoma from whole slide images from Guangdong Provincial People's Hospital and TCGA with image-level annotations. The goal of this challenge is to perform semantic segmentation for differentiating three important types of tissues in the WSIs of lung adenocarcinoma, including cancerous epithelial region, cancerous stroma region and normal region. Paticipants have to use image-level annotations to give pixel-level prediction.

QUBIQ21 Logo
QUBIQ2021
Challenge User

Quantification of Uncertainties in Biomedical Image Segmentation Challenge 2021

tiger Logo
TIGER
Challenge User

Grand challenge on automate assessment of tumor infiltrating lymphocytes in digital pathology slides of triple negative and Her2-positive breast cancers

PI-CAI Logo
The PI-CAI Challenge
Challenge User

Artificial Intelligence and Radiologists at Prostate Cancer Detection in MRI

CoNIC-Challenge Logo
CoNIC 2022
Challenge User

Colon Nuclei Identification and Counting Challenge 2022

MELA Logo
MELA2022
Challenge User

MICCAI 2022 MELA Challenge: A Large-Scale Detection Benchmark of 1,100 CT Scans for Mediastinal Lesion Analysis

Parse2022 Logo
Parse2022
Challenge User

It is of significant clinical interest to study pulmonary artery structures in the field of medical image analysis. One prerequisite step is to segment pulmonary artery structures from CT with high accuracy and low time-consuming. The segmentation of pulmonary artery structures benefits the quantification of its morphological changes for diagnosis of pulmonary hypertension and thoracic surgery. However, due to the complexity of pulmonary artery topology, automated segmentation of pulmonary artery topology is a challenging task. Besides, the open accessible large-scale CT data with well labeled pulmonary artery are scarce (The large variations of the topological structures from different patients make the annotation an extremely challenging process). The lack of well labeled pulmonary artery hinders the development of automatic pulmonary artery segmentation algorithm. Hence, we try to host the first Pulmonary ARtery SEgmentation challenge in MICCAI 2022 (Named Parse2022) to start a new research topic.

TDSC-ABUS2023 Logo
TDSC-ABUS2023
Challenge User

Tumor Detection, Segmentation and Classification Challenge on Automated 3D Breast Ultrasound

instance Logo
INSTANCE2022
Challenge User

The 2022 Intracranial Hemorrhage Segmentation Challenge on Non-Contrast head CT (NCCT)

BCNB Logo
BCNB
Challenge User

Early Breast Cancer Core-Needle Biopsy WSI Dataset

ATLAS Logo
ATLAS R2.0 - Stroke Lesion Segmentation
Challenge User

Anatomical Tracings of Lesions After Stroke

SynthRAD2023 Logo
SynthRAD2023
Challenge User

SynthRAD is the first challenge on automatic generation of synthetic computed tomography (sCT) for radiotherapy

3DTeethSeg Logo
3D Teeth Scan Segmentation and Labeling Challenge MICCAI2022
Challenge User

Computer-aided design (CAD) tools have become increasingly popular in modern dentistry for highly accurate treatment planning. In particular, in orthodontic CAD systems, advanced intraoral scanners (IOSs) are now widely used as they provide precise digital surface models of the dentition. Such models can dramatically help dentists simulate teeth extraction, move, deletion, and rearrangement and therefore ease the prediction of treatment outcomes. Although IOSs are becoming widespread in clinical dental practice, there are only few contributions on teeth segmentation/labeling available in the literature and no publicly available database. A fundamental issue that appears with IOS data is the ability to reliably segment and identify teeth in scanned observations. Teeth segmentation and labelling is difficult as a result of the inherent similarities between teeth shapes as well as their ambiguous positions on jaws.

FLARE22 Logo
MICCAI FLARE 2022
Challenge Editor

MICCAI 2022 Fast and Low-resource semi-supervised Abdominal oRgan sEgmentation (FLARE) Challenge

AGGC22 Logo
AGGC22
Challenge User

autoPET Logo
autoPET
Challenge User

Automatic lesion segmentation in whole-body FDG-PET/CT

ACROBAT Logo
ACROBAT 2023
Challenge User

The ACROBAT challenge aims to advance the development of WSI registration algorithms that can align WSIs of IHC-stained breast cancer tissue sections to corresponding tissue regions that were stained with H&E. All WSIs originate from routine diagnostic workflows.

SurgT Logo
SurgT: Surgical Tracking
Challenge User

This challenge consists of surgical videos with a target bounding box and the participants are expected to develop visual tracking algorithms to estimate the trajectory of the bounding box throughout the video-sequence.

P2ILF Logo
Preoperative to Intraoperative Laparoscopy Fusion
Challenge User

Preoperative to Intraoperative Laparoscopy Fusion

HECKTOR Logo
MICCAI HECKTOR 2022
Challenge User

Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT Images

DRAC22 Logo
Diabetic Retinopathy Analysis Challenge MICCAI2022
Challenge User

Diabetic Retinopathy (DR) lesions segmentation, image quality assessment and classification of proliferatived DR (PDR) and non-PDR in ultra-wide optical coherence tomography angiography mosaic (UW-OCTA-M) images

AMOS22 Logo
Multi-Modality Abdominal Multi-Organ Segmentation Challenge 2022
Challenge User

vessel-wall-segmentation-2022 Logo
Carotid Vessel Wall Segmentation and Atherosclerosis Diagnosis
Challenge User

crossmoda2022 Logo
Cross-Modality Domain Adaptation: Segmentation & Classification
Challenge User

The CrossMoDA 2022 challenge is the second edition of the first large and multi-class medical dataset for unsupervised cross-modality Domain Adaptation.

PS-FH-AOP-2023 Logo
FH-PS-AOP challenge
Challenge User

Fetal Head and Pubic Symphysis Segmentation Challenge

isles22 Logo
Ischemic Stroke Lesion Segmentation Challenge
Challenge User

NeurIPS22-CellSeg Logo
Cell Segmentation in Multi-modality Microscopy Images
Challenge Editor

Weakly Supervised Cell Segmentation in Multi-modality High-resolution Microscopy Images

bci Logo
Breast Cancer Immunohistochemical Image Generation Challenge
Challenge User

The Breast Cancer Immunohistochemical Image Generation Challenge aims to directly generate IHC-stained breast cancer histopathology images from HE-stained images.

AUTO-RTP Logo
Fully Automated Radiotherapy Treatment Planning Challenge
Challenge User

Evaluating fully automated external beam radiotherapy treatment planning in prostate cancer

2023PAIP Logo
PAIP 2023: TC prediction in pancreatic and colon cancer
Challenge User

Tumor cellularity prediction in pancreatic cancer (supervised learning) and colon cancer (transfer learning)

SNEMI3D Logo
SNEMI3D: 3D Segmentation of neurites in EM images
Challenge User

The challenge is organized in the context of the IEEE International Symposium on Biomedical Imaging, 2013. The old evaluation site (http://brainiac2.snemi3d.org/SNEMI3D/) will be replaced by this one.

HaN-Seg2023 Logo
The Head and Neck Organ-at-Risk CT & MR Segmentation Challenge
Challenge User

A semantic multimodal segmentation challenge comprising 30 organs at risk

RnR-ExM Logo
Robust Non-rigid Registration Challenge for Expansion Microscopy
Challenge User

XPRESS Logo
Xray Projectomic Reconstruction Extracting Segment with Skeleton
Challenge User

autoPET-II Logo
autoPET-II
Challenge User

Automated Lesion Segmentation in PET/CT - Domain Generalization

toothfairy Logo
ToothFairy: Cone-Beam Computed Tomography Segmentation Challenge
Challenge User

This is the first edition of the ToothFairy challenge organized by the University of Modena and Reggio Emilia with the collaboration of Raudboud University. This challenge aims at pushing the development of deep learning frameworks to segment the Inferior Alveolar Canal (IAC) by incrementally extending the amount of publicly available 3D-annotated Cone Beam Computed Tomography (CBCT) scans. CBCT modality is becoming increasingly important for treatment planning and diagnosis in implant dentistry and maxillofacial surgery. The three-dimensional information acquired with CBCT can be crucial to plan a vast number of surgical interventions with the aim of preserving noble anatomical structures such as the Inferior Alveolar Canal (IAC), which contains the homonymous nerve (Inferior Alveolar Nerve, IAN). Deep learning models can support medical personnel in surgical planning procedures by providing a voxel-level segmentation of the IAN automatically extracted from CBCT scans.

spider Logo
SPIDER
Challenge User

LNQ2023 Logo
LNQ2023
Challenge User

Accurate lymph node size estimation is critical for staging cancer patients, initial therapeutic management, and in longitudinal scans, assessing response to therapy. Current standard practice for quantifying lymph node size is based on a variety of criteria that use unidirectional or bidirectional measurements on just one or a few nodes, typically on just one axial slice. But humans have hundreds of lymph nodes, any number of which may be enlarged to various degrees due to disease or immune response. While a normal lymph node may be approximately 5mm in diameter, a diseased lymph node may be several cm in diameter. The mediastinum, the anatomical area between the lungs and around the heart, may contain ten or more lymph nodes, often with three or more enlarged greater than 1cm. Accurate segmentation in 3D would provide more information to evaluate lymph node disease.

ARCADE Logo
ARCADE-MICCAI2023
Challenge User

UltrasoundEnhance2023 Logo
Ultrasound Image Enhancement challenge 2023
Challenge User

MultiCenterAorta Logo
SEG.A. - Segmentation of the Aorta
Challenge User

Segmentation, modeling and visualization of the arterial tree are still a challenge in medical image analysis. The main track of this challenge deals with the fully automatic segmentation of the aortic vessel tree in computed tomography images. Optionally, teams can submit tailored solutions for meshing and visualization of the vessel tree.

SPPIN Logo
Surgical Planning in Pediatric Neuroblastoma
Challenge User

MedFM2023 Logo
Foundation Model Prompting for Medical Image Classification
Challenge User

The primary objective of this challenge is to promote the development and evaluation of model adaptation techniques for medical image classification to leverage the existing foundation models.

DENTEX Logo
DENTEX - MICCAI23
Challenge User

Dental Enumeration and Diagnosis on Panoramic X- rays Challenge

TopCoW23 Logo
Topology-Aware Anatomical Segmentation of the Circle of Willis
Challenge User

Segment the Circle of Willis (CoW) vessel components for both CTA and MRA

LDCTIQAC2023 Logo
Low-dose Computed Tomography Perceptual Image Quality Assessment
Challenge User

CL-Detection2023 Logo
CL-Detection 2023
Challenge User

Cephalometric landmark detection in lateral x-ray images

OCELOT2023 Logo
OCELOT 2023: Cell Detection from Cell-Tissue Interaction
Challenge User

THOMPSON-Challenge Logo
The Trauma THOMPSON Challenge
Challenge User

BONBID-HIE2023 Logo
Hypoxic Ischemic Encephalopathy Lesion Segmentation Challenge
Challenge User

CHAIMELEON Logo
CHAIMELEON Open Challenges
Challenge User

A unique opportunity for scientists to advance cancer research with AI. The CHAIMELEON Open Challenges invites participants to collaborate to develop and train new AI-powered solutions driving innovation in cancer diagnosis and treatment.

PANORAMA Logo
PANORAMA
Challenge User

Artificial Intelligence and Radiologists at Pancreatic Cancer Diagnosis in CT

ULS23 Logo
Universal Lesion Segmentation Challenge '23
Challenge User

JustRAIGS Logo
Justified Referral in AI Glaucoma Screening
Challenge User

lightmycells Logo
Light My Cells : Bright Field to Fluorescence Imaging Challenge
Challenge User

Join the Light My Cells France-Bioimaging challenge! Enhance biology and microscopy by contributing to the development of new image-to-image deep labelling methods. The task: predict the best-focused output images of several fluorescently labelled organelles from label-free transmitted light input images. Dive into the future of imaging with us! 🌐🔬 #LightMyCellsChallenge

LEOPARD Logo
The LEOPARD Challenge
Challenge User

AutoPET-III Logo
AutoPET III
Challenge User

AI4Life-MDC24 Logo
AI4Life Microscopy Denoising Challenge
Challenge User

Wellcome to AI4Life-MDC24! In this challenge, we want to focus on an unsupervised denoising of microscopy images. By participating, researchers can contribute to a critical area of scientific research, aiding in interpreting microscopy images and potentially unlocking discoveries in biology and medicine.

ISLES-24 Logo
Ischemic Stroke Lesion Segmentation Challenge 2024
Challenge User

surgvu24 Logo
Surgical Visual Understanding
Challenge User

AortaSeg24 Logo
Multi-Class Segmentation of Aortic Branches and Zones in CTA
Challenge User

3D Segmentation of Aortic Branches and Zones on Computed Tomography Angiography (CTA)

SELMA3D Logo
Self-supervised learning for 3D light-sheet microscopy image seg
Challenge User

COSAS Logo
Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation
Challenge User

CURVAS Logo
Calibration and Uncertainty for multiRater Volume Assessment in
Challenge User

Spleen Segmentation Logo
Spleen Segmentation
Algorithm User

Automatic spleen segmentation on thorax-abdomen CT scans.

Gleason Grading of Prostate Biopsies Logo
Gleason Grading of Prostate Biopsies
Algorithm User

Automated Gleason grading of prostate biopsies following the Gleason Grade Group system.

Gleason Grading of Prostate Biopsies (non-normalized) Logo
Gleason Grading of Prostate Biopsies (non-normalized)
Algorithm User

Automated Gleason grading of prostate biopsies following the Gleason Grade Group system. This version of the algorithm runs without data normalization.

Pulmonary Lobe Segmentation Logo
Pulmonary Lobe Segmentation
Algorithm User

Automatic segmentation of pulmonary lobes on CT scans for patients with COPD or COVID-19.

CORADS-AI Logo
CORADS-AI
Algorithm User

Segments pulmonary lobes and lesions and computes the CORADS and CT Severity Score from a non-contrast CT scan.

Hip segmentation in CT Logo
Hip segmentation in CT
Algorithm User

Segments the left and right hip bones in CT images

Pancreatic Ductal Adenocarcinoma Detection in CT Logo
Pancreatic Ductal Adenocarcinoma Detection in CT
Algorithm User

Rib segmentation Logo
Rib segmentation
Algorithm User

Segments and labels the ribs in CT images